derechos
Si dos eventos A y B son mutuamente excluyentes, esta regla indica que la probabilidad de que ocurra uno u otro de los eventos, es igual a la suma de sus probabilidades.
P(A ó B) = P(A U B)
P(A U B) = P(A)+ P (B)
P(A ó B ó...ó Z) = P(A U B U...U Z)
P(A U B U...UZ)= P(A)+ P(B) +... P(Z)
REGLA GENERAL DE LA ADICIÓN
Cuando los eventos no son mutuamente excluyentes, la probabilidad de la ocurrencia conjunta de los dos eventos, se resta de la suma de las probabilidades de los dos eventos.P(A ó B) = P(A) + P(B) - P(A y B)
En la teoría de conjuntos, la ocurrencia conjunta hace referencia a la intersección, por lo tanto:
P(A y B) = P(A ∩B)
Entonces: P(A U B) = P(A)+ P(B) - P(A ∩ B)
LA REGLA DE ADICION
P (A U B) = P ( A ) + P ( B ) – P ( A ∩ B ) Eventos no mutuamente excluyentes
P (A U B) = P ( A ) + P ( B ) Eventos mutuamente excluyentes
Ejemplo: 1.Supongamos que se extrae una carta de una baraja de 52 cartas bien barajada. ¿Cuál es la probabilidad de que la carta sea o un rey o una figura negra? (Evento no mutuamente excluyente)
Solución:Hay 52 sucesos o eventos simples. Sean los sucesos o eventos
Hay 4 reyes. A = Que la carta sea un rey.
Hay 6 figuras negras B = Que la carta sea una figura negra
P ( A U B ) =P( A ) + P( B ) – P(A ∩ B )
P(A U B)= 4/52 + 6/52 – 2/52 = 8/52= 0.15
Ejemplo: 2. Del ejemplo 1 calcular. ¿Cuál es la probabilidad de extraer una espada o un trébol? (Eventos mutuamente excluyentes)
Solución: Hay52 sucesos o eventos simples. Sean los sucesos
Hay 13 espadas. A = Que la carta sea espada.
Hay 13 tréboles. B = Que la carta sea trébol.
P(A U B)= P(A) + P (B)= 13/52 + 13/52 = 26/52
P(A U B)=0.50
Ejemplo: 3. Consideremos un juego el cual debe elegirse una carta de una baraja de 52 cartas. Ganaremos $ 10 si la carta es negra o es un rey. ¿Cuál es la probabilidad de ganar? (Evento no...
Regístrate para leer el documento completo.