Derivada de matematica

Páginas: 8 (1978 palabras) Publicado: 3 de julio de 2011
-------------------------------------------------
Derivada
En cálculo (rama de las matemáticas), la derivada se representa cómo una función que cambia (valor de la variable dependiente) a medida que su entrada (valor de la variable independiente) cambia. En términos poco rigurosos, una derivada puede ser vista como cuánto está cambiando el valor de una función en un punto dado (o sea suvelocidad de variación); por ejemplo, la derivada de la posición de un vehículo con respecto al tiempo, es la velocidad instantánea con la cual el vehículo está viajando.
La derivada de una función es un valor de entrada dado que describe la mejor aproximación lineal de una función cerca del valor de entrada. Para funciones de valores reales de una sola variable, la derivada en un punto representa elvalor de la pendiente de la recta tangente a la gráfica de la función en dicho punto. En dimensiones más elevadas, la derivada de una función en un punto es la transformación lineal que más se aproxima a la función en valores cercanos de ese punto. Algo estrechamente relacionado es el diferencial de una función.
El proceso de encontrar una derivada es llamado diferenciación. El teorema fundamentaldel cálculo dice que la diferenciación es el proceso inverso de la integración en funciones continuas.
-------------------------------------------------

-------------------------------------------------
Definición analítica de derivada como un límite

Esquema que muestra los incrementos de la función en x y en y.
En terminología clásica, la diferenciaciónmanifiesta el coeficiente en queuna cantidad cambia a consecuencia de un cambio en otra cantidad .
En matemáticas, coeficiente es un factor multiplicativo que pertenece a cierto objeto como una variable, un vector unitario, una función base, etc.
En física, coeficiente es una expresión numérica que mediante alguna fórmula determina las características o propiedades de un cuerpo.
En nuestro caso, observando la gráfica de laderecha, el coeficiente del que hablamos vendría representado en el punto  de la función por el resultado de la división representada por la relación , que como puede comprobarse en la gráfica, es un valor que se mantiene constante a lo largo de la línea recta azul que representa la tangente en el punto  de la función. Esto es fácil de entender puesto que el tríangulo rectángulo formado en la gráficacon vértice en el punto , por mucho que lo dibujemos más grande, al ser una figura proporcional el resultado de  es siempre el mismo.
Esta noción constituye la aproximación más veloz a la derivada, puesto que el acercamiento a la pendiente de la recta tangente es tanto por la derecha como por la izquierda de manera simultánea.
En particular, se tiene que la derivada de la función en el punto  sedefine como sigue:

,
Si este límite existe, de lo contrario, f' no está definida. Esta última expresión coincide con la velocidad instantánea del movimiento continuo uniforme acelerado en cinemática.
Aunque podrían calcularse todas las derivadas empleando la definición de derivada como un límite, existen reglas bien establecidas, conocidas como teoremas para el cálculo de derivadas, lascuales permiten calcular la derivada de muchas funciones de acuerdo a su forma sin tener que calcular forzosamente el límite. Tales reglas son consecuencia directa de la definición de derivada y de reglas previas, como puede apreciarse en todo buen texto de cálculo infinitesimal.
También puede definirse alternativamente la derivada de una función en cualquier punto de su dominio de la siguientemanera:
,
La cual representa un acercamiento de la pendiente de la secante a la pendiente de la tangente ya sea por la derecha o por la izquierda según el signo de . El aspecto de este límite está relacionado más con la velocidad instantánea del movimiento uniformemente acelerado que con la pendiente de la recta tangente a una curva.
No obstante su aparente diferencia, el cálculo de la derivada...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • derivadas matematicas
  • matematicas derivadas
  • Matematica Derivadas
  • Derivada matematicas
  • Matematicas Limites Derivados
  • Actividades Matemáticas Con El Programa Derive
  • Derivadas Mátemáticas 1
  • apunte de matematicas derivadas

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS