Derivada

Páginas: 5 (1002 palabras) Publicado: 4 de noviembre de 2013
1.0 INTRODUCCION

Podremos ver   como las matemáticas se relacionan en el ámbito laboral de un ingeniero y por qué un ingeniero su rama más fuerte son las matemáticas ya que sin ellas los ingenieros no existirían.
Las matemáticas son exactas y el trabajo así debe ser no debe de haber errores.
A continuaciones veremos cómo las derivadas las empleamos para algo sencillo pero muy importante.Las derivadas son una razón de cambio pero no solo veremos cómo se determina una magnitud o cantidad con respecto a otra, si no que tan rápido es su variación.
Las derivadas las podemos aplicar hasta en la vida cotidiana por ejemplo:
Pensemos en una persona que cae a un río cuyas aguas se encuentran a muy baja temperatura.
Es claro que la temperatura corporal será función del tiempo que lapersona permanezca en el agua y claro también es que la función será decreciente al haber pérdida de calor del cuerpo hacia el agua tendiendo el mismo a alcanzar la temperatura del agua dada la diferencia de masa entre ambos.
Sin embargo en este problema resulta vital conocer la rapidez de disminución de la temperatura del cuerpo que por cierto no es lineal.
La disminución podría ser más rápida alprincipio de la caída e ir luego en lenteciéndose, ocurrir exactamente lo contrario, etc.
2.0 MARCO TEORICO

2.1 FUNCION
En matemáticas, se dice que una magnitud o cantidad es función de otra si el valor de la primera depende exclusivamente del valor de la segunda. Por ejemplo el área A de un círculo es función de su radio r: el valor del área es proporcional al cuadrado del radio, A = π·r2.Del mismo modo, la duración T de un viaje en un tren circulando a una velocidad v de 150 km/h depende de la distancia d entre el origen y el destino: la duración es inversamente proporcional a la distancia, T = v / d. A la primera magnitud (el área, la duración) se la denomina variable dependiente, y la cantidad de la que depende (el radio, la distancia) es la variable independiente.
De manera másabstracta, el concepto general de función, aplicación o mapeo se refiere en matemáticas a una regla que asigna a cada elemento de un primer conjunto un único elemento de un segundo conjunto. Por ejemplo, cada número entero posee un único cuadrado, que resulta ser un número natural (incluyendo el cero):

2.2 DERIVADA
En matemáticas, la derivada de una función es una medida de la rapidez con laque cambia el valor de dicha función según cambie el valor de su variable independiente. La derivada de una función es un concepto local, es decir, se calcula como el límite de la rapidez de cambio media de la función en un cierto intervalo, cuando el intervalo considerado para la variable independiente se toma cada vez más pequeño. Por ello se habla del valor de la derivada de una cierta funciónen un punto dado.
Un ejemplo habitual aparece al estudiar el movimiento: si una función representa la posición de un objeto con respecto al tiempo, su derivada es la velocidad de dicho objeto. Un avión que realice un vuelo transatlántico de 4500 km en entre las 12:00 y las 18:00, viaja a una velocidad media de 750 km/h. Sin embargo, puede estar viajando a velocidades mayores o menores en distintostramos de la ruta. En particular, si entre las 15:00 y las 15:30 recorre 400 km, su velocidad media en ese tramo es de 800 km/h. Para conocer su velocidad instantánea a las 15:20, por ejemplo, es necesario calcular la velocidad media en intervalos de tiempo cada vez menores alrededor de esta hora: entre las 15:15 y las 15:25, entre las 15:19 y las 15:21, etc.
El valor de la derivada de unafunción en un punto puede interpretase geométricamente, ya que se corresponde con pendiente de la recta tangente a la gráfica de la función en dicho punto. La recta tangente es a su vez la gráfica de la mejor aproximación lineal de la función alrededor de dicho punto. La noción de derivada puede generalizarse para el caso de funciones de más de una variable con la derivada parcial y el diferencial....
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Derivados
  • Derivadas
  • A la deriva
  • A la deriva...
  • Derivaciones
  • Derivadas
  • Derivadas
  • deriva

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS