Distribucion geometrica de pascal
La distribución geométrica es un modelo adecuado para aquellos procesos en los que se repiten pruebas hasta la consecución del éxito a resultado deseado y tiene interesantes aplicaciones en los muestreos realizados de esta manera . También implica la existencia de una dicotomía de posibles resultados y la independencia de las pruebas entre sí.
Procesoexperimental del que se puede hacer derivar
Esta distribución se puede hacer derivar de un proceso experimental puro o de Bernouilli en el que tengamos las siguientes características
• El proceso consta de un número no definido de pruebas o experimentos separados o separables. El proceso concluirá cuando se obtenga por primera vez el resultado deseado (éxito).
• Cada prueba puede dar dosresultados mutuamente excluyentes : A y no A
• La probabilidad de obtener un resultado A en cada prueba es p y la de obtener un resultado no A es q
siendo (p + q = 1).
Las probabilidades p y q son constantes en todas las pruebas ,por tanto , las pruebas ,son independientes (si se trata de un proceso de "extracción" éste se llevará a , cabo con devolución del individuo extraído) .
•(Derivación de la distribución). Si en estas circunstancias aleatorizamos de forma que tomemos como variable aleatoria X = el número de pruebas necesarias para obtener por primera vez un éxito o resultado A , esta variable se distribuirá con una distribución geométrica de parámetro p.
DISTRIBUCIÓN GEOMÉTRICA.
Esta distribución es un caso especial de la Binomial, ya que se desea que ocurra unéxito por primera y única vez en el último ensayo que se realiza del experimento, para obtener la fórmula de esta distribución, haremos uso de un ejemplo.
Ejemplo: Se lanza al aire una moneda cargada 8 veces, de tal manera que la probabilidad de que aparezca águila es de 2/3, mientras que la probabilidad de que aparezca sello es de 1/3, Determine la probabilidad de que en el último lanzamientoaparezca una águila.
Solución: Si nosotros trazamos un diagrama de árbol que nos represente los 8 lanzamientos de la moneda, observaremos que la única rama de ese árbol que nos interesa es aquella en donde aparecen 7 sellos seguidos y por último una águila; como se muestra a continuación:
S S S S S S S A
Sí denotamos;
x = el número de repeticiones del experimento necesarias para que ocurra un éxitopor primera y única vez = 8 lanzamientos
p = probabilidad de que aparezca una águila = p( éxito) = 2/3
q = probabilidad de que aparezca un sello = p(fracaso) = 1/3
Entonces la probabilidad buscada sería;
P(aparezca una águila en el último lanzamiento)=p(S)*p(S)*p(S)*p(S)*p(S)*p(S)*p(S)*p(A) =
=q*q*q*q*q*q*q*p = qx-1p
Luego, la fórmula a utilizar cuando se desee calcular probabilidades conesta distribución sería;
p(X)=qx-1p
Donde:
p(x) = probabilidad de que ocurra un éxito en el ensayo x por primera y única vez
p = probabilidad de éxito
q = probabilidad de fracaso
Resolviendo el problema de ejemplo;
x = 8 lanzamientos necesarios para que aparezca por primera vez una águila
p = 2/3 probabilidad de que aparezca una águila
q = 1/3 probabilidad de que aparezca un sello
p(x=8) =(1/3)8–1(2/3)= 0.0003048
Ejemplos:
1. Sí la probabilidad de que un cierto dispositivo de medición muestre una desviación excesiva es de 0.05, ¿cuál es la probabilidad de que; a) el sexto de estos dispositivos de medición sometidos a prueba sea el primero en mostrar una desviación excesiva?, b) el séptimo de estos dispositivos de medición sometidos a prueba, sea el primero que no muestre unadesviación excesiva?.
Solución:
a) x = 6 que el sexto dispositivo de medición probado sea el primero que muestre una variación excesiva
p = 0.05 =probabilidad de que un dispositivo de medición muestre una variación excesiva
q = 0.95 =probabilidad de que un dispositivo de medición no muestre una variación excesiva
p(x = 6) = (0.95)6–1(0.05)= 0.03869
b) x = 7 que el séptimo dispositivo de...
Regístrate para leer el documento completo.