Distribucion normal y binomial ejercicios resueltos
1) n= 5
p=0.50
a) p(x=2) = p(x≤2)-p(x≤1)
=0.5000-0.1875
=0.3125
b) p(x≥1) = 1-p(x≤0)
=1-0.0312
=0.9688
c) p(x>3)= 1-p(x≤3)
=1-0.8125
=0.1875
d) p(x=0)= (5C0)(0.50)⁰(0.50)⁵=0.0312
2) n=10
p=1/6
a) p(x=0)=(10C0)(1/6)⁰ (5/6)¹⁰
=0.1615
b) p(x>8)=p(x≥9)
=0
c) p(x≥3)=1-p(x≤2)
=1-(p(x=0)+p(x=1)+p(x=2)
=1-((10C0)(1/6)⁰ (5/6)¹⁰+(10C1)(1/6)¹ (5/6)⁹+(10C2)(1/6)²(5/6)⁸
=1-(0.1615+0.3230+0.2907)
=1-0.7752=0.2248
d) p(x=10)= 0
3) n=3
p=0.50
p(x=3)= (3C3) (0.50)³(0.50)⁰
=0.1250
P(x=2)= (3C2) (0.50)²(0.50)¹
=0.3750
P(x=1)= (3C1) (0.50)¹(0.50)²
=0.3750
P(x=0)= (3C0) (0.50)⁰(0.50)³
=0.1250
Comprobación= 0.1250+0.3750+0.3750+0.1250= 1
μ= (3) (0.50)= 1.5
σ²= (3) (0.50)(0.50)= 0.754) n=4
p=0.543
a) p(x=2)= (4C2) (0.543)²(0.457)²
=0.3694
b) p(x=4)= (4C4) (0.543)⁴(0.457)⁰
=0.0869
c) p(x≥1)= 1- p(x≤0)
=1- (4C0) (0.543)⁰ (0.457)⁴
=1-0.0436
=0.9564
d) p(x=0)= 0.0436
5) n=7
p=0.15
a) p(x=7)= p(x≤7)-p(x≤6)
=0
b) p(x=2)= p(≤2)-p(x≤1)= 0.9262-0.7166
=0.2096
c) p(x=0)= 0.3206
d) p(x=0)= 0.3206
6) n=25
p=0.25
a) p(x=25)= (25C25) (0.25)²⁵(0.75)⁰
= 0
b) p(x≥22)= 0
c) p(x=23)= 0
d) p(x=0)= 0.008
7) n=5
p=0.98
a) p(x=5)= (5C5) (0.98)⁵(0.02)⁰
=0.9039
b) p(x=0)= 0
c) p(x≥2)= p(x=2)+p(x=3)+p(x=4)+p(x=5)= (5C2) (0.98)²(0.02)³+ (5C3)(0.98)³(0.02)²+(5C4)(0.98)⁴(0.02)¹+0.9039
= 0.000077+0.003764+0.0922+0.9039
=0.9998
d) p(x>2)= p(x=3)+p(x=4)+p(x=5)
= 0.0037+0.0922+0.9039
= 0.9993
8) n=15
p=1/6
a) p(x=10)= (15C10) (1/6)¹⁰(5/6)⁵
=0.00002
b) p(x≥2)= 1-p(x≤1)
=1-{p(x=0)+p(x=1)}
= 1-{(15C0)(1/6)⁰(5/6)¹⁵+ (15C1)(1/6)¹(5/6)¹⁴}
= 1-(0.0649+0.1947)
= 1-0.2596
= 0.7404
c) p(x=0)= (15C0)(1/6)⁰(5/6)¹⁵
= 0.0649
d) p(x>10)= p(x=11)+p(x=12)+p(x=13)+p(x=14)+p(x=15)
= (15C11) (1/6)¹¹(5/6)⁴+ (15C12)(1/6)¹²(5/6)³+(15C13)(1/6)¹³(5/6)²
+(15C14)(1/6)¹⁴(5/6)¹+ (15C15) (1/6)¹⁵(5/6)⁰
= 0
9) n=5
p=0.39
a) p(x=2)= p(x≤2)-p(x≤1)
= 0.6997-0.3545
= 0.3452
b) p(x>3)= 1- p(x≤3)
= 1- 0.9204
= 0.0796
c) p(x=0)= 0.0845
d) p(x=3)= p(x≤3)- p(x≤2)
= 0.9204- 0.6997
= 0.2207
10) Encontrar la media y la varianza delos ejercicios anteriores:
10.1) μ= (5) (0.50)= 2.5
σ²= (5) (0.50) (0.50)= 1.25
10.2) μ= (10) (1/6)= 1.67
σ²= (10) (1/6) (5/6)= 1.39
10.3) μ= (3) (0.50)= 1.5
σ²= (3) (0.50) (0.50)= 0.75
10.4) μ= (4) (0.543)= 2.172
σ²= (4) (0.543) (0.457)= 0.992
10.5) μ= (7) (0.15)= 1.05
σ²= (7) (0.15) (0.85)= 0.892510.6) μ= (25) (0.25)= 6.25
σ²= (25) (0.25) (0.75)= 4.6875
10.7) μ= (5) (0.98)= 4.9
σ²= (5) (0.98) (0.02)= 0.098
10.8) μ= (15) (1/6)= 2.5
σ²= (15) (1/6) (5/6)= 2.08
10.9) μ= (5) (0.39)= 1.95
σ²= (5) (0.39) (0.61)= 1.1895
11) Con la ayuda de la tabla de distribución N(0.1), halla:
a) P(z≤1)= 0.8413
b) P(z≥0.56)=...
Regístrate para leer el documento completo.