Distribucion T

Páginas: 16 (3906 palabras) Publicado: 14 de febrero de 2013
ESTADISTICA

Conjunto de métodos de planificación de experimentos, obtención de datos, análisis de
los mismos, deducción de conclusiones a partir de dicho análisis y toma de decisiones
Con base en el análisis. En la inferencia estadística se infieren conclusiones sobre una
Población de análisis de una muestra. En la estadística descriptiva se hace el
tratamiento de los datos.

MUESTREOSelección de un subconjunto representativo de toda una población. El análisis de la
muestra ofrece información acerca de toda la población. Esto es lo que se llama
inferencia estadística.
Por ejemplo los parámetros de población (tales como la media y la varianza de la
población) se pueden estimar mediante estadígrafos muéstrales (tales como la media y
la varianza muéstrales). Se empleancontrastes de significancia (o contrastes de
hipótesis) para contrastar si las diferencias observadas entre dos muestras son debidas
a la variación al azar o son significantes, como cuando se contrasta un nuevo proceso
de producción frente a uno antiguo. La población puede ser finita o infinita. En el
muestreo con remplazó cada elemento individual escogido se vuelve a la población
antes de lasiguiente elección. En el muestreo aleatorio todo miembro de la población
tiene igual posibilidad de ser escogido. En el muestreo aleatorio estratificado la
población se reparte en estratos y se combinan las muestras aleatorias obtenidas de
cada uno de los estratos.
En le muestreo sistemático la población se ordena, se elige el primer elemento al azar y
los subsiguientes se toman a intervalosdeterminados, por ejemplo cada cien
personas en una lista electoral. Si una muestra aleatoria de tamaño n es el conjunto de
valores numéricos {x1, x2,…..xn } la media muestral es n
Ʃ x=xi/n
1
La varianza muestral es Ʃ (xi-x)²/(n-1) o bien Ʃ (xi-x)²/n para una distribución normal. Si
µ es la media de la población, la varianza muestral es: Ʃ (xi-µ)/n

AMH

CONTRANSTE DE HIPOTESIS(Contraste de significancia) Regla para decidir si una hipótesis acerca de la distribución
De una variable aleatoria es aceptada o se ha de descartar, utilizando una muestra de
la distribución. La hipótesis de nulidad, y se escribe Ho; y se le contrasta con otra
hipótesis H1. Por ejemplo cuando se lanza una moneda, Ho puede ser p (cara) =1/2 y
H1seria entonces p (caras) ˃ ½ por ejemplo. A partir delos datos de la muestra se
calcula un estadígrafo y si queda dentro de la región critica en la cual su valor es
significativamente diferente del esperado dentro de Ho, se descarta Ho a favor de H1.Si
no se acepta Ho. Hay erro de tipo 1 si Ho se descarta cuando ha debido aceptarse hay
error de tipo 2 si se le acepta cuando se le ha debido descartar. El nivel de significancia
α del contraste esla máxima probabilidad con que se puede correr el riego de un error
de tipo 1. Por ejemplo α =1% significancia que Ho se descarta equivocadamente en un
caso de 100

MEDIA

Valor representativo o esperado de un conjunto de números. La media aritmética o
promedio de x1, x2,…….,xn esta dada por (x1+x2+x3+……+xn)n
Si x1,x2……xk se presentan con frecuencia respectivas f1,f2,…..fk entonces lamedia
aritmética es
(f1x1+f2x2+….fkxk)/(f1+f2+…..+fk)
Cuando los datos están clasificados como ocurren en una tabla de frecuencias se
sustituye xi por la marca de clase.
La media ponderada es
W = (w1x1+w2x2+….wnxn)/(w1+w2+….wn)
Donde el peso wi esta asociado a xi.
La media armónica se define por
H= n/ [(1/x1) + (1/x2) +…..+(1/xn)].
La media geométrica se define por:
1/n

G = (x1·x2…..xn)La media de una variable aleatoria es su valor esperado

AMH

DESVIACION

Diferencia entre los valores de una muestra y su media aritmética simple. Por ejemplo,
los valores observados de la altura de 8 alumnos de una clase son
176, 190, 156, 154, 172, 168,162, y 158 como su media es.
X = 176+190+156+154+172+168+162+158 = 1336 = 167
8
8
Las deviaciones de cada dato serán: 9,...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Distribucion t
  • distribucion t
  • Distribucion de t student
  • Localizacion t distribucion de almacenes
  • Distribucion t student
  • distribución t de student
  • Distribucion T De Student
  • distribución t-Student

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS