Econometria 1
El fitxer esperançavida.xls inclou dades sobre la renda per càpita anual en dòlars (R) i esperança de vida en anys (E) de 92 països, circa 2008. Per extreure informació d’aquestamostra sobre el comportament de l’esperança de vida en relació al nivell de renda per càpita, es proposa el següent model de regressió:
1. Quin signe creus que tindrà el paràmetre β 2? Raonabreument.
β 2 serà, en aquest cas, semi-elasticitat. És a dir, ens indica en quant varia l’esperança de vida si augmentem la renda en un 1%.
β 2 > 0 , quanta més renda obtenen elspaïsos, més esperança de vida hi ha.
2. Amb l’ajuda de Gretl, estima el model anterior per MQO utilitzant la mostra donada.
(a) Inclou una còpia de l’output de Gretl al final de l’exercici.Etiqueta aquest output com Apèndix-1. (Atenció, fixa’t que la variable explicativa del model és ln(R) i no R, així, abans d’estimar, has de generar la variable corresponent.)
(b) Quina estimació hasobtingut pel paràmetre β 1? I per β 2?
β 1 : 10,6606
β 2: 6, 62817
(c) Quina és el valor del coeficient de determinació associat a aquest ajust?
R2= 0,787825
3. Amb l’ajuda d’unfull de càlcul (Excel), troba el valor d’aquests quatre elements:
Utilitza els valors que has trobat d’aquests quatre elements per calcular l’estimador MQO de i (Atenció, l’estimació delsparàmetres ha de coincidir amb la donada per Gretl). (Inclou la còpia del full de càlcul, a on es vegi com has calculat els valors dels elements anteriors, com Apèndix-2, al final del treball. No oblidisimprimir les línies de quadricula del full de càlcul. Etiqueta bé les columnes. Encercla clarament a on es troben elements demanats.
Es recomana imprimir el full de càlcul horitzontalment. En duespàgines hi cap tot.)
a) = 1198,235626
b) = 180, 7791406
c) = 69
d) = 8,80172531
* β 2 =...
Regístrate para leer el documento completo.