ecuaciones diferenciales

Páginas: 5 (1056 palabras) Publicado: 20 de marzo de 2013

Ecuación diferencial
Una ecuación diferencial es una ecuación en la que intervienen derivadas de una o más funciones desconocidas. Dependiendo del número de variables independientes respecto de las que se deriva, las ecuaciones diferenciales se dividen en:
Ecuaciones diferenciales ordinarias: aquellas que contienen derivadas respecto a una sola variable independiente.
Ecuaciones enderivadas parciales: aquellas que contienen derivadas respecto a dos o más variables.
Índice
  [ocultar] 
1 Introducción
1.1 Orden de la ecuación
1.2 Grado de la ecuación
1.3 Ecuación diferencial lineal
1.4 Usos
1.5 Ecuaciones semilineales y cuasilineales
2 Solución de una ecuación diferencial
2.1 Tipos de soluciones
2.1.1 Solución general
2.1.2 Solución particular
2.1.3 Solución singular2.2 Resolución de algunas ecuaciones
3 Véase también
4 Bibliografía
5 Enlaces externos
[editar]Introducción
Una ecuación diferencial es una ecuación que incluye expresiones o términos que involucran a una función matemática incógnita y sus derivadas. Algunos ejemplos de ecuaciones diferenciales son:

es una ecuación diferencial ordinaria, donde  representa una función noespecificada de lavariable independiente , es decir, ,  es la derivada de  con respecto a .
La expresión  
es una ecuación en derivadas parciales.
A la variable dependiente también se le llama función incógnita (desconocida). La resolución de ecuaciones diferenciales es un tipo de problema matemático que consiste en buscar una función que cumpla unadeterminada ecuación diferencial. Se puede llevar a cabo mediante un método específico para la ecuación diferencial en cuestión o mediante una transformada (como, por ejemplo, la transformada de Laplace).
editarOrden de la ecuación
El orden de la derivada más alta en una ecuación diferencial se denomina orden de laecuación.
Grado de la ecuación
Es la potencia de la derivada de mayor orden que aparece en la ecuación, siempre y cuando la ecuación esté en forma polinómica, de no ser así se considera que no tiene grado.
[editar]Ecuación diferencial lineal
Se dice que una ecuación es lineal si tiene la forma , es decir:
Ni la función ni sus derivadas están elevadas a ninguna potenciadistinta de uno o cero.
En cada coeficiente que aparece multiplicándolas sólo interviene la variable independiente.
Una combinación lineal de sus soluciones es también solución de la ecuación.
Ejemplos:
 es una ecuación diferencial ordinaria lineal de primer orden, tiene como soluciones , con k un número real cualquiera.
 es una ecuación diferencial ordinaria lineal de segundo orden, tiene comosoluciones , con a y b reales.
 es una ecuación diferencial ordinaria lineal de segundo orden, tiene como soluciones , con a y b reales.
[editar]Usos
Las ecuaciones diferenciales son muy utilizadas en todas las ramas de la ingeniería para el modelado de fenómenos físicos. Su uso es común tanto en ciencias aplicadas, como en ciencias fundamentales (física, química, biología) o matemáticas, comoen economía.
En dinámica estructural, la ecuación diferencial que define el movimiento de una estructura es:

Donde M es la matriz que describe la masa de la estructura, C es la matriz que describe el amortiguamiento de la estructura, K es la matriz de rigidez que describe la rigidez de la estructura, xes vector de desplazamientos [nodales] de la estructura, P es el vector de fuerzas (nodalesequivalentes), y t indica tiempo. Esta es una ecuación de segundo orden debido a que se tiene el desplazamiento x y su primera y segunda derivada con respecto al tiempo.
La vibración de una cuerda está descrita por la siguiente ecuación diferencial en derivadas parciales de segundo orden:

donde  es el tiempo y  es la coordenada del punto sobre la cuerda. A esta ecuación se le llama ecuación de...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Ecuaciones Diferenciales
  • Ecuaciones Diferenciales
  • Ecuaciones Diferenciales
  • ecuaciones diferenciales
  • ecuaciones diferenciales
  • ecuaciones diferenciales
  • Ecuaciones diferenciales
  • Ecuacion diferencial

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS