Ecuaciones lineales y sus aplicaciones

Páginas: 11 (2527 palabras) Publicado: 27 de febrero de 2012
Ecuaciones Lineales Y Sus Aplicaciones











Ecuaciones lineales

En matemáticas y álgebra lineal, un sistema de ecuaciones lineales, también conocido como sistema lineal de ecuaciones o simplemente sistema lineal, es un conjunto de ecuaciones lineales sobre un cuerpo o un anillo conmutativo. Un ejemplo de sistema lineal de ecuaciones sería el siguiente:





El problemaconsiste en encontrar los valores desconocidos de las variables x1, x2 y x3 que satisfacen las tres ecuaciones.
El problema de los sistemas lineales de ecuaciones es uno de los más antiguos de la matemática y tiene una infinidad de aplicaciones, como en procesamiento digital de señales, análisis estructural, estimación, predicción y más generalmente en programación lineal así como en laaproximación de problemas no lineales de análisis numérico.









Introducción

En general, un sistema con m ecuaciones lineales y n incógnitas puede ser escrito en forma normal como:




Donde son las incógnitas y los números son los coeficientes del sistema sobre el cuerpo . Es posible reescribir el sistema separando con coeficientes con notación matricial:

(1)


Sirepresentamos cada matriz con una única letra obtenemos:

Donde A es una matriz m por n, x es un vector columna de longitud n y b es otro vector columna de longitud m. El sistema de eliminación de Gauss-Jordán se aplica a este tipo de sistemas, sea cual sea el cuerpo del que provengan los coeficientes.


Sistemas Lineales Reales

En esta sección se analizan las propiedades de los sistemas deecuaciones lineales sobre el cuerpo , es decir, los sistemas lineales en los coeficientes de las ecuaciones son números reales.
En los sistemas con 2 incógnitas, el universo de nuestro sistema será el plano bidimensional, mientras que cada una de las ecuaciones será representada por una recta, si es lineal, o por una curva, si no lo es. La solución será el punto (o línea) donde se intersequen todaslas rectas y curvas que representan a las ecuaciones. Si no existe ningún punto en el que se intersequen al mismo tiempo todas las líneas, el sistema es incompatible, o lo que es lo mismo, no tiene solución.
En el caso de un sistema con 3 incógnitas, el universo será el espacio tridimensional, siendo cada ecuación un plano dentro del mismo. Si todos los planos intersecan en un único punto, lascoordenadas de este serán la solución al sistema. Si, por el contrario, la intersección de todos ellos es una recta o incluso un plano, el sistema tendrá infinitas soluciones, que serán las coordenadas de los puntos que forman dicha línea o superficie.
Para sistemas de 4 ó más incógnitas, la representación gráfica no existe, por lo que dichos problemas no se enfocan desde esta óptica.Métodos de solución a sistemas de ecuaciones lineales
Sustitución
El método de sustitución consiste en despejar en una de las ecuaciones cualquier incógnita, preferiblemente la que tenga menor coeficiente, para, a continuación, sustituirla en otra ecuación por su valor.
En caso de sistemas con más de dos incógnitas, la seleccionada debe ser sustituida por su valor equivalente en todaslas ecuaciones excepto en la que la hemos despejado. En ese instante, tendremos un sistema con una ecuación y una incógnita menos que el inicial, en el que podemos seguir aplicando este método reiteradamente. Por ejemplo, supongamos que queremos resolver por sustitución este sistema:

En la primera ecuación, seleccionamos la incógnita por ser la de menor coeficiente y que posiblemente nosfacilite más las operaciones, y la despejamos, obteniendo la siguiente ecuación.

El siguiente paso será sustituir cada ocurrencia de la incógnita en la otra ecuación, para así obtener una ecuación donde la única incógnita sea la .


Al resolver la ecuación obtenemos el resultado , y si ahora sustituimos esta incógnita por su valor en alguna de las ecuaciones originales obtendremos , con...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • aplicaciones de sistemas de ecuaciones lineales
  • Ecuaciones lineales aplicada a la economia
  • aplicaciones de ecuaciones lineales
  • Aplicaciones de Sistemas de Ecuaciones Lineales en Electricidad
  • Aplicaciones sistemas de ecuaciones lineales en electricidad
  • Aplicaciones de Ecuaciones Lineales
  • Ecuaciónes lineales
  • Ecuaciones no lineales

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS