Ecuaciones Similtaneas
Se llama sistema de ecuaciones todo conjunto de ecuaciones distintas que tiene una o más soluciones comunes.
Resolver un sistema de ecuaciones simultáneas es hallar elconjunto de valores que satisfacen simultáneamente cada una de sus ecuaciones.
Características de un sistema de dos ecuaciones lineales con dos incógnitas.
Los resultados característicos de resolver unsistema de dos ecuaciones lineales con dos variables son:
Hay exactamente una solución.
Un número infinito de soluciones.
No existe solución.
Un sistema es consistente si tiene por lo menos unasolución. Un sistema con un número infinito de soluciones es dependiente y consistente. Un sistema es inconsistente si carece de solución.
SISTEMA DE ECUACIONES LINEALES CON DOS VARIABLES.Eliminación de una incógnita.
Eliminar una incógnita de un sistema de ecuaciones es reducir el sistema propuesto a otro que tenga una ecuación y una incógnita menos.
Los métodos de eliminación son:
1º. Poradición o sustracción.
2º. Por igualación.
3º. Por sustitución.
1º. Eliminación por adición o sustracción:
Para resolver un sistema de dos ecuaciones con dos incógnitas empleando el método deeliminación por suma o resta:
a) Multiplíquense los dos miembros de una de las ecuaciones, o de ambas, por número tales que resulten iguales los coeficientes de una misma incógnita.
b) Súmense lasdos ecuaciones si dichos coeficientes son de signos contrarios, y réstense si son de mismo signo.
c) Resuélvase la ecuación que así resulta, con lo cual se obtiene el valor de la incógnita quecontiene.
d) Sustitúyase este valor en una de las ecuaciones dadas y resuélvase; se obtiene así la otra incógnita.
Ejemplo: Sea resolver el sistema:
x - 3y = 9 . . . . . . . . . . . . . . . . . . (1),
2x+ y = -10 . . . . . . . . . . . . . . . . .(2).
Solución:
Multiplíquese ambos miembros de (1) por 2, se obtiene:
2x - 6y = 18 . . . . . . . . . . . . . . . . (3).
Réstese miembro a miembro...
Regístrate para leer el documento completo.