Edificio En Matlab
Plano en XZ
Plano en YZ
Dada las circunstancias de la simetría del edifico en este caso, las numeraciones para los pórticos tanto en X como en Y son iguales, simplificando los cálculos en matlab.
Para cada pórtico se tiene:
Número de pisos = 5
Numero de vanos en cada pórtico = 5
Total vigas = 25 elementos
Longitud de vigas en X = 6 metros
Longitud de vigas en Y = 5 metros
Total Columnas= 30 elementos
Longitud de Columnas = 3 metros
Grados de libertad = 77
Vista en 3d del edificio
Dimensiones columnas y vigas
Dimensiones
Calculo del pórtico en dirección X
%pórtico en dirección "X"
Kx=zeros(77,77);
%Propiedades del concreto reforzado como material deconstrucción
E=2e7;
%columna
%propiedades de la columna
Bse=0.50
alt=0.50
A=Bse*alt;
I=Bse*alt^3/12;
l=3;
% Matriz de transformación T de una columna
eta=0; mu=1;
T=[eta mu 0 0 0 0;-mu eta 0 0 0 0;0 0 1 0 0 0;0 0 0 eta mu 0;0 0 0 -mu eta 0;0 0 0 0 0 1];
%matriz de rigidez de cada columna en coordenadas globales
k_ex=zeros(6,6);
k_ex(1,:)=E*A*[1/l 0 0 -1/l 0 0];k_ex(2,:)=E*I*[0 12/l^3 6/l^2 0 -12/l^3 6/l^2];
k_ex(3,:)=E*I*[0 6/l^2 4/l 0 -6/l^2 2/l];
k_ex(4,:)=E*A*[-1/l 0 0 1/l 0 0];
k_ex(5,:)=E*I*[0 -12/l^3 -6/l^2 0 12/l^3 -6/l^2];
k_ex(6,:)=E*I*[0 6/l^2 2/l 0 -6/l^2 4/l];
K_1x=T'*k_ex*T;
K_2x=T'*k_ex*T;
K_3x=T'*k_ex*T;
K_4x=T'*k_ex*T;
K_5x=T'*k_ex*T;
K_6x=T'*k_ex*T;
K_7x=T'*k_ex*T;
K_8x=T'*k_ex*T;
K_9x=T'*k_ex*T;
K_10x=T'*k_ex*T;
K_11x=T'*k_ex*T;K_12x=T'*k_ex*T;
K_13x=T'*k_ex*T;
K_14x=T'*k_ex*T;
K_15x=T'*k_ex*T;
K_16x=T'*k_ex*T;
K_17x=T'*k_ex*T;
K_18x=T'*k_ex*T;
K_19x=T'*k_ex*T;
K_20x=T'*k_ex*T;
K_21x=T'*k_ex*T;
K_22x=T'*k_ex*T;
K_23x=T'*k_ex*T;
K_24x=T'*k_ex*T;
K_25x=T'*k_ex*T;
K_26x=T'*k_ex*T;
K_27x=T'*k_ex*T;
K_28x=T'*k_ex*T;
K_29x=T'*k_ex*T;
K_30x=T'*k_ex*T;
% ENSAMBLAJE DE LAS MATRICES COLUMNAS A LA MATRIZ GLOBAL
%columna 1g_1x=[1 6 7 2 18 19];
DeltaK_1=zeros(77,77);
DeltaK_1(g_1x,g_1x)=K_1x;
Kx=Kx+DeltaK_1;
%columna 2
g_2x=[1 8 9 2 20 21];
DeltaK_2=zeros(77,77);
DeltaK_2(g_2x,g_2x)=K_2x;
Kx=Kx+DeltaK_2;
%columna 3
g_3x=[1 10 11 2 22 23];
DeltaK_3=zeros(77,77);
DeltaK_3(g_3x,g_3x)=K_3x;
Kx=Kx+DeltaK_3;
%columna 4
g_4x=[1 12 13 2 24 25];
DeltaK_4=zeros(77,77);
DeltaK_4(g_4x,g_4x)=K_4x;
Kx=Kx+DeltaK_4;%columna 5
g_5x=[1 14 15 2 26 27];
DeltaK_5=zeros(77,77);
DeltaK_5(g_5x,g_5x)=K_5x;
Kx=Kx+DeltaK_5;
%columna 6
g_6x=[1 16 17 2 28 29];
DeltaK_6=zeros(77,77);
DeltaK_6(g_6x,g_6x)=K_6x;
Kx=Kx+DeltaK_6;
%columna 7
g_7x=[2 18 19 3 30 31];
DeltaK_7=zeros(77,77);
DeltaK_7(g_7x,g_7x)=K_7x;
Kx=Kx+DeltaK_7;
%columna 8
g_8x=[2 20 21 3 32 33];
DeltaK_8=zeros(77,77);
DeltaK_8(g_8x,g_8x)=K_8x;Kx=Kx+DeltaK_8;
%columna 9
g_9x=[2 22 23 3 34 35];
DeltaK_9=zeros(77,77);
DeltaK_9(g_9x,g_9x)=K_9x;
Kx=Kx+DeltaK_9;
%columna 10
g_10x=[2 24 25 3 36 37];
DeltaK_10=zeros(77,77);
DeltaK_10(g_10x,g_10x)=K_10x;
Kx=Kx+DeltaK_10;
%columna 11
g_11x=[2 26 27 3 38 39];
DeltaK_11=zeros(77,77);
DeltaK_11(g_11x,g_11x)=K_11x;
Kx=Kx+DeltaK_11;
%columna 12
g_12x=[2 28 29 3 40 41];DeltaK_12=zeros(77,77);
DeltaK_12(g_12x,g_12x)=K_12x;
Kx=Kx+DeltaK_12;
%columna 13
g_13x=[3 30 31 4 42 43];
DeltaK_13=zeros(77,77);
DeltaK_13(g_13x,g_13x)=K_13x;
Kx=Kx+DeltaK_13;
%columna 14
g_14x=[3 32 33 4 44 45];
DeltaK_14=zeros(77,77);
DeltaK_14(g_14x,g_14x)=K_14x;
Kx=Kx+DeltaK_14;
%columna 15
g_15x=[3 34 35 4 46 47];
DeltaK_15=zeros(77,77);
DeltaK_15(g_15x,g_15x)=K_15x;
Kx=Kx+DeltaK_15;%columna 16
g_16x=[3 36 37 4 48 49];
DeltaK_16=zeros(77,77);
DeltaK_16(g_16x,g_16x)=K_16x;
Kx=Kx+DeltaK_16;
%columna 17
g_17x=[3 38 39 4 50 51];
DeltaK_17=zeros(77,77);
DeltaK_17(g_17x,g_17x)=K_17x;
Kx=Kx+DeltaK_17;
%columna 18
g_18x=[3 40 41 4 52 53];
DeltaK_18=zeros(77,77);
DeltaK_18(g_18x,g_18x)=K_18x;
Kx=Kx+DeltaK_18;
%columna 19
g_19x=[4 42 43 5 54 55];
DeltaK_19=zeros(77,77);...
Regístrate para leer el documento completo.