Ejercicios De Programacion Lineal
EJEMPLO INICIAL
Se va a mezclar mineral procedente de 4 minas diferentes para fabricar bandas de un tractor. Los análisis han demostrado que para producir una banda con las cualidades adecuadas se debe contar con 3 elementos A B y C.
En particular, cada tonelada de mineral debe contener por lo menos 5 kilos de A, por lo menos 100 Kg.de B y al menos 30 Kg. de C. Elmineral de cada una de las 4 minas contiene los 3 elementos básicos, pero en diferentes proporciones, su composición en Kg. por toneladas, así como sus costos, son:
Elem / Minas 1 2 3 4
A 10 3 8 2
B 90 150 75 175
C 45 25 20 37
Costos
($/Ton) 800 400 600 500
Se debe cumplir que la formación de una tonelada debe hacerse con las aportaciones fraccionarias de las 4 minas, se debedescubrir una combinación factible de mínimo costo.
1)¿Cuál es la solución, en terminos de lo aportado por cada mina?
2)¿Cuánto cuesta una tonelada de esta mezcla?
3)¿Podría bajar los costos de 511.1111 $?
4)¿Qué significa que la variable de holgura de la restricción 1 sea cero?
5)¿Qué significa que la variable de holgura de la restricción 2 sea 31.66?
6)¿Por qué se debe usar más de 100 Kg. deB, si solo se necesitan 100 Kg.?
7)¿Cómo conseguir que el costo total baje de 500 $?
8)¿Por qué no el requerimiento B?
9)¿Cómo saber cuál y cuánto?
10)¿A cuánto disminuir los requerimientos del elemento A?
11)¿Cuánto se ahorraría?
12)¿Qué pasa si disminuye un poco más, por ejemplo a 4,5 $?
13)¿Qué pasa con el requerimiento del elemento C?
14)¿Qué pasa si bajamos A y C a la vez?
15)¿Quépasa si aumentamos la cantidad requerida del elemento A (El 5 en el miembro de la deracha en la 1ra Restricción.) ?
16)¿Qué pasa si el costo del mineral de la mina 2 cambia por ejemplo a 450 $.(Cambia el coeficiente de T2 en la Función Objetivo, que inicialmente es 400 $)?
17)¿Qué sucede si el costo del mineral de la mina 2 aumenta más alla de la cantidad permisible?
18)¿Qué pasa si llega allimite superior sin excederlo?
19)¿Cuánto debe disminuir el costo de T4 que actualmente es 500 Bs para que resulte una decisión óptima su uso?
20)¿Qué le sucede al valor de la función objetivo en este caso?
SIMOPT Version 3.0 IEOR VU Amsterdam
The following model was read:
Objective Function
MIN 800T1 + 400T2 + 600T3 + 500T4
Subject to :
1. 10 T1 + 3 T2 + 8 T3 + 2 T4>= 5.
2. 90 T1 + 150 T2 + 75 T3 + 175 T4 >= 100
3. 45 T1 + 25 T2 + 20 T3 + 37 T4 >= 30
4. 1 T1 + 1 T2 + 1 T3 + 1 T4 = 1
Iteration 1
T1 T2 T3 T4 Surp.1 Art .1 Surp.2
Re1.Cost 146.00 179.00 104.00 215.00 1.00 0.00 1.00
Art .1 10.00 3.00 8.00 2.00 1.00 1.00 0.00
Art.2 90.00 150.00 75.00 175.00 0.00 0.00 1.00
Art.3 45.00 25.00 20.00 37.00 0.00 0.00 0.00
Art .4 1.00 1.001.00 1.00 0.00 0.00 0.00
Art.2 SurD.3 Art.3 Art.4 RHS
Re1.Cost 0.00 1.00 0.00 0.00 136.00
Art .1 0:00 0.00 0.00 0.00 5.00
Art.2 1.00 0.00 0.00 0.00 100.00
Art.3 0.00 1.00 1.00 0.00 30.00
Art .4 0.00 0.00 0.00 1.00 1.00
Last Iteration.
T1. T2 T3 T4 Surp.1 Art.1 Surp.2
Re1.Cost 0.00 0,00 0.00 91.11 44.44 44.44 0.00
T3 0.00 0.00 1.00 0.77 0.15 0.15 0.00
T2 0.00 1.00 0.001.36 0.19 0.19 0.00
T1 1.00 0.00 0.00 0.41 0.04 0.04 0.00
Surp.2 0.00 0.00 0.00 8.33 13.33 13.33 1.00
Art.2 Surp.3 Art.3 Art.4 RHS
Rel.Cost 0.00 4.44 4.44 155.56 511.11
T3 0.00 0.05 0.05 0.85 0.04.
T2 0.00 0.01 0.01 1.19 0.70
T1 0.00 0.04 0.04 1.04 0.26
Surp.2 -1.00 1.67 1.67 148.33 31.67
Summary of Results
Value Objective Function : 511.1111
VariableActivity Level Reduced Cost
T1 : 0.2593 0.0000
T2 : 0.7037 0.0000
T3 : 0.0370 0.0000
T4 : 0.0000 91.1111
Slack or Surplus Shadow Prices
Constraint 1 0.0000 44.4444
Constraint 2 31.6667 0.0000
Constraint 3 0.0000 4.4444
Constraint 4 0.0000 155.5556
Objective Coefficient Ranges
Variable Current
Coefficient Allowed Interval
T1 800.0000 [680.0000 ,...
Regístrate para leer el documento completo.