electronica
Todas las variables y constantes del Álgebra booleana, admiten sólo uno de dos valores en sus entradas y salidas: Sí/No, 0/1 o Verdadero/Falso. Estos valores bivalentes y opuestos pueden ser representados por números binarios de un dígito (bits), por lo cual el Álgebra booleana se puede entender cómo el Álgebra del Sistema Binario. Al igual que en álgebratradicional, también se trabaja con letras del alfabeto para denominar variables y formar ecuaciones para obtener el resultado de ciertas operaciones mediante una ecuación o expresión booleana. Evidentemente los resultados de las correspondientes operaciones también serán binarios.
Las álgebras booleanas, estudiadas por primera vez en detalle por George Boole , constituyen un área de lasmatemáticas que ha pasado a ocupar un lugar prominente con el advenimiento de la computadora digital. Son usadas ampliamente en el diseño de circuitos de distribución y computadoras, y sus aplicaciones van en aumento en muchas otras áreas. En el nivel de lógica digital de una computadora, lo que comúnmente se llama hardware, y que está formado por los componentes electrónicos de la máquina, se trabaja condiferencias de tensión, las cuales generan funciones que son calculadas por los circuitos que forman el nivel. Éstas funciones, en la etapa de diseña del hardware, son interpretadas como funciones de boole.
El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario " º " definido en éste juego de valores acepta un par deentradas y produce un solo valor booleano, por ejemplo, el operador booleano AND acepta dos entradas booleanas y produce una sola salida booleana.
Para cualquier sistema algebraico existen una serie de postulados iniciales, de aquí se pueden deducir reglas adicionales, teoremas y otras propiedades del sistema, el álgebra booleana a menudo emplea los siguientes postulados:
Cerrado. El sistemabooleano se considera cerrado con respecto a un operador binario si para cada par de valores booleanos se produce un solo resultado booleano.
Conmutativo. Se dice que un operador binario " º " es conmutativo si A º B = B º A para todos los posibles valores de A y B.
Asociativo. Se dice que un operador binario " º " es asociativo si (A º B) º C = A º (B º C) para todos los valores booleanos A, B, y C.Distributivo. Dos operadores binarios " º " y " % " son distributivos si A º (B % C) = (A º B) % (A º C) para todos los valores booleanos A, B, y C.
Identidad. Un valor booleano I se dice que es un elemento de identidad con respecto a un operador binario " º " si A º I
Los Teoremas Básicos del álgebra Booleana son:
TEOREMA 1
Ley Distributiva
A (B+C) = AB+AC
A
B
C
B+C
AB
AC
AB+AC
A(B+C)
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
1
0
1
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
0
0
0
0
0
1
0
1
1
0
1
1
1
1
1
0
1
1
0
1
1
1
1
1
1
1
1
1
1
El Álgebra de Boole es una estructura algebraica que puede ser considerada desde distintos puntos de vista matemáticos:
El álgebra de Boole es un retículo (A,1,0, , +), donde el conjunto A = {1,0}, como retículo presenta las siguientes propiedades, las leyes principales son estas:
1. Ley de Idempotencia:
2. Ley de Asociatividad:
3. Ley de Conmutatividad:
4. Ley de Cancelativo
El conjunto A es un Grupo abeliano respecto a (+) y () y es distributiva:
11. La operación (+) es distributiva respecto a ():
12. La operación () es...
Regístrate para leer el documento completo.