Ensayo sobre los numeros reales
INSTITUTO TECNOLÓGICO DE TEPIC
Carrera: Ingeniería Civil
Materia: Calculo Diferencial
Nombre del alumno: José de Jesús Escobedo Rodríguez
Nombre del maestro: Roberto Oramas Bustillos
Fecha: 13 de septiembre de 2015
Ensayo Unidad 1
“Los Números Reales”
Números Reales
En matemáticas, el conjunto de los números reales (denotado por ℝ) incluye tanto a los números racionales(positivos, negativos y el cero) como a los números irracionales; y en otro enfoque, trascendentes y algebraicos. Los irracionales y los trascendentes no se pueden expresar mediante una fracción de dos enteros con denominador no nulo; tienen infinitas cifras decimales a periódicas, tales como: √5, π, el número real log2, cuya trascendencia fue enunciada por Euler en el siglo XVIII.
Leonhard Euler,fue un matemático y físico suizo. Se trata del principal matemático del siglo XVIII y uno de los más grandes y prolíficos de todos los tiempos.
Vivió en Rusia y Alemania la mayor parte de su vida y realizó importantes descubrimientos en áreas tan diversas como el cálculo o la teoría de grafos. También introdujo gran parte de la moderna terminología y notación matemática, particularmente para el áreadel análisis matemático, como por ejemplo la noción de función matemática. Asimismo se le conoce por sus trabajos en los campos de la mecánica, óptica y astronomía.
Un número real puede ser expresado de diferentes maneras, por un lado están los números reales que pueden ser expresados con mucha facilidad, ya que no poseen reglas complejas para hacerlo. Estos son los números enteros y losfraccionarios, como por ejemplo el número 67 que viene a ser un entero, o también el 34, que es un número fraccionario compuesto de dos enteros, cuyo numerador es 3 y su denominador es 4. Sin embargo, también existen otros números que pueden ser expresados bajo diferentes reglas matemáticas más complejas como números cuyos decimales son infinitos como el número π o 2√ y que sirven para realizar cálculosmatemáticos pero no pueden ser representados como un símbolo numérico único.
Los números reales se representa con la letra R, y aparecen por la necesidad de realizar cálculos más complejos ya que en épocas como entre el siglo XVI y el XVII, se hacían necesarias nuevas cifras para los avances tecnológicos que ya no podían ser representados por cifras aproximadas ni por expresiones coloquiales por suinexactitud. El rigor del avance de la humanidad a partir de sus herramientas, hizo necesaria la creación de nuevas expresiones matemáticas que den mayor exactitud a los cálculos.
Por lo tanto, el conjunto de los números reales se conformó a partir de otros subconjuntos de números que surgían de necesidades en las matemáticas, como los números negativos y los números fraccionarios y decimales. EnEuropa, cuna de la ciencia en la modernidad, los números negativos no fueron utilizados hasta ya avanzado el siglo XVII, sin embargo,
ya habían sido pensados muchos siglos atrás por culturas como la china y la hindú. Incluso se llegaba a descartar las soluciones de cálculos que tenían resultado negativo, por ser considerados números irreales.
Los números fraccionarios por su parte, fueronutilizados por los egipcios para la resolución de diferentes problemas. Pero es en la cultura griega de donde se extrae el actual uso de los racionales, de raciones de números, ya que los utilizaban para definir el espacio entre las notas musicales con relaciones de armonía que correspondían a divisiones en las melodías del sonido. Así se empezó a ver fracciones en otras cosas y sustancias.
A partirde allí, la complejidad de los cálculos empieza a profundizarse y es hasta el teorema de Pitágoras que surgen los números irracionales de los que se hablaba, donde los decimales de la fracción son infinitos y por lo tanto no son expresables en números únicos. De aquí nace el, quizás, primer número irracional que se conoce. A partir del teorema planteado como la constante pitagórica, cuya cifra...
Regístrate para leer el documento completo.