Ensayos De Elipse

Páginas: 5 (1098 palabras) Publicado: 27 de noviembre de 2012
ELIPSE
La elipse es una línea curva, cerrada y plana cuya definición más usual es:
La elipse es el lugar geométrico de todos los puntos de un plano, tales que la suma de las distancias a otros dos puntos fijos llamados focos es constante. Una elipse es la curva simétrica cerrada que resulta al cortar la superficie de un cono por un plano oblicuo al eje de simetría –con ángulo mayor que el dela generatriz respecto del eje de revolución.1 Una elipse que gira alrededor de su eje menor genera un esferoide achatado, mientras que una elipse que gira alrededor de su eje principal genera un esferoide alargado.
ELEMENTOS DE LA ELIPSE
La elipse es una curva plana y cerrada, simétrica respecto a dos ejes perpendiculares entre sí:
* El semieje mayor (el segmento C-a de la figura), y
*el semieje menor (el segmento C-b de la figura).
Miden la mitad del eje mayor y menor respectivamente.
Puntos de una elipse
Los focos de la elipse son dos puntos equidistantes del centro, F1 y F2 en el eje mayor. La suma de las distancias desde cualquier punto P de la elipse a los dos focos es constante, e igual a la longitud del diámetro mayor, (PF1 + PF2 = 2a).
Si F1 y F2 son dos puntos de unplano, y 2a es una constante mayor que la distancia F1F2, un punto P
Ejes de una elipse
El eje mayor 2a, es la mayor distancia entre dos puntos adversos de la elipse. El resultado constante de la suma de las distancias de cualquier punto a los focos equivale al eje mayor. El eje menor 2b, es la menor distancia entre dos puntos adversos de la elipse. Los ejes de la elipse son perpendiculares entresi.
Excentricidad de una elipse
La excentricidad ε (épsilon) de una elipse es la razón entre su semidistancia focal (segmento que va del centro de la elipse a uno de sus focos), denominada por la letra c, y su semieje mayor. Su valor se encuentra entre cero y uno.
Excentricidad angular de una elipse
La excentricidad angular  es el ángulo para el cual el valor de la funcióntrigonométrica seno concuerda con la excentricidad , esto es:
CONSTANTE DE UNA ELIPSE
En la figura de la derecha se muestran los dos radio vectores correspondientes a cada punto P de una elipse, los vectores que van de los focos F1 y F2 a P. Las longitudes de los segmentos correspondientes a cada uno son PF1 (color azul) y PF2 (color rojo), y en la animación se ilustra como varían para diversos puntos P de la elipse.Como establece la definición inicial de la elipse como lugar geométrico, para todos los puntos P de la elipse la suma de las longitudes de sus dos radio vectores es una cantidad constante igual a la longitud 2a del eje mayor: PF1 + PF2 = 2a
En la elipse de la imagen 2a vale 10 y se ilustra, para un conjunto selecto de puntos, cómo se cumple la definición.

DRIECTRICES DE UNA ELIPSE
Cadafoco F de la elipse está asociado con una recta paralela al semieje menor llamada directriz (ver ilustración de la derecha). La distancia de cualquier punto P de la elipse hasta el foco F es una fracción constante de la distancia perpendicular de ese punto P a la directriz que resulta en la igualdad:

La relación entre estas dos distancias es la excentricidad  de la elipse. Esta propiedad (quepuede ser probada con la herramienta esferas de Dandelin) puede ser tomada como otra definición alternativa de la elipse.
ECUACIONES DE LA ELIPSE :
En coordenadas cartesianas
[editar]Forma cartesiana centrada en origen
La ecuación de una elipse en coordenadas cartesianas, con centro en el origen, es:

donde a > 0 y b > 0 son los semiejes de la elipse, donde si a corresponde al eje delas abscisas y b al eje de las ordenadas la elipse es horizontal, si es al revés, entonces es vertical. El origen O es la mitad del segmento [FF']. La distancia entre los focos FF' se llama distancia focal y vale 2c = 2ea, siendo e la excentricidad y a el semieje mayor.
Forma cartesiana centrada fuera del origen
Si el centro de la elipse se encuentra en el punto (h,k), la ecuación es:...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • ¿Qué es un Elipse?
  • elipse
  • Elipses
  • Elipse
  • Elipse
  • Elipse
  • Elipse
  • las elipses

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS