estadistica
Estudiante
Argenis Lantigua Bernard
Matricula
100151823Profesor
Guillermo Mateo Montero
Sección
14
Asignatura
Estadística Inferencia para la Psicología
Tema
Probabilidades
Probabilidad: Relación entre sucesos
Se pueden establecer entre los sucesos diferentes relaciones:
Un suceso puede estar contenido en otro: las posibles soluciones del primer suceso también lo son del segundo,pero este segundo suceso tiene además otras soluciones suyas propias.
Ejemplo: lanzamos un dado y analizamos dos sucesos: a) que salga el número 6, y b) que salga un número par. Vemos que el suceso a) está contenido en el suceso b).
Siempre que se da el suceso a) se da el suceso b), pero no al contrario. Por ejemplo, si el resultado fuera el 2, se cumpliría el suceso b), pero no el a).b) Dos sucesos pueden ser iguales: esto ocurre cuando siempre que se cumple uno de ellos se cumple obligatoriamente el otro y viceversa.
Ejemplo: lanzamos un dado al aire y analizamos dos sucesos: a) que salga número par, y b) que salga múltiplo de 2. Vemos que las soluciones coinciden en ambos casos.
c) Unión de dos o más sucesos: la unión será otro suceso formado por todos los elementos delos sucesos que se unen.
Ejemplo: lanzamos un dado al aire y analizamos dos sucesos: a) que salga número par y b) que el resultado sea mayor que 3. El suceso unión estaría formado por los siguientes resultados: el 2, el 4, el 5 y el 6
d) Intersección de sucesos: es aquel suceso compuesto por los elementos comunes de dos o más sucesos que se intersectan.
Ejemplo: lanzamos un dado al aire, yanalizamos dos sucesos: a) que salga número par, y b) que sea mayor que 4. La intersección de estos dos sucesos tiene un sólo elemento, el número 6 (es el único resultado común a ambos sucesos: es mayor que 4 y es número par).
e) Sucesos incompatibles: son aquellos que no se pueden dar al mismo tiempo ya que no tienen elementos comunes (su intersección es el conjunto vacío).
Ejemplo: lanzamos undado al aire y analizamos dos sucesos: a) que salga un número menor que 3, y b) que salga el número 6. Es evidente que ambos no se pueden dar al mismo tiempo.
f) Sucesos complementarios: son aquellos que si no se da uno, obligatoriamente se tiene que dar el otro.
Ejemplo: lanzamos un dado al aire y analizamos dos sucesos: a) que salga un número par, y b) que salga un número impar. Vemos quesi no se da el primero se tiene que dar el segundo (y viceversa).
Probabilidad
Como hemos comentado anteriormente, la probabilidad mide la mayor o menor posibilidad de que se dé un determinado resultado (suceso) cuando se realiza un experimento aleatorio.
La probabilidad toma valores entre 0 y 1 (o expresados en tanto por ciento, entre 0% y 100%):
El valor cero corresponde al sucesoimposible: lanzamos un dado al aire y la probabilidad de que salga el número 7 es cero (al menos, si es un dado certificado por la OMD, "Organización Mundial de Dados").
El valor uno corresponde al suceso seguro: lanzamos un dado al aire y la probabilidad de que salga cualquier número del 1 al 6 es igual a uno (100%).
El resto de sucesos tendrá probabilidades entre cero y uno: que será tanto mayorcuanto más probable sea que dicho suceso tenga lugar.
¿Cómo se mide la probabilidad?
Uno de los métodos más utilizados es aplicando la Regla de Laplace: define la probabilidad de un suceso como el cociente entre casos favorables y casos posibles.
P(A) = Casos favorables / casos posibles
Veamos algunos ejemplos:
a) Probabilidad de que al lanzar un dado salga el número 2: el caso favorable es...
Regístrate para leer el documento completo.