Estadistica
INTERVALO DE CONFIANZA PARA LA DIFERENCIA DE MEDIAS DE DOS DISTRIBUCIONES NORMALES, VARIANZAS DESCONOCIDAS PERO IGUALES
Si s12 y s22 son las medias y las varianzas de dos muestras aleatorias detamaño n1 y n2, respectivamente, tomadas de dos poblaciones normales e independientes con varianzas desconocidas pero iguales, entonces un intervalo de confianza del 100() por ciento para la diferenciaentre medias es:
en donde:
es el estimador combinado de la desviación estándar común de la población con n1+n2 – 2 grados de libertad.
Ejemplos:
1. Un artículo publicado dio a conocer losresultados de un análisis del peso de calcio en cemento estándar y en cemento contaminado con plomo. Los niveles bajos de calcio indican que el mecanismo de hidratación del cemento queda bloqueado y estopermite que el agua ataque varias partes de una estructura de cemento. Al tomar diez muestras de cemento estándar, se encontró que el peso promedio de calcio es de 90 con una desviación estándar de5; los resultados obtenidos con 15 muestras de cemento contaminado con plomo fueron de 87 en promedio con una desviación estándar de 4. Supóngase que el porcentaje de peso de calcio está distribuido demanera normal. Encuéntrese un intervalo de confianza del 95% para la diferencia entre medias de los dos tipos de cementos. Por otra parte, supóngase que las dos poblaciones normales tienen la mismadesviación estándar.
Solución:
El estimador combinado de la desviación estándar es:
Al calcularle raíz cuadrada a este valor nos queda que sp = 4.41
expresión que se reduce a – 0.72 6.72Nótese que el intervalo de confianza del 95% incluye al cero; por consiguiente, para este nivel confianza, no puede concluirse la existencia de una diferencia entre las medias.
2. Se realizó unexperimento para comparar el tiempo promedio requerido por el cuerpo humano para absorber dos medicamentos, A y B. Suponga que el tiempo necesario para que cada medicamento alcance un nivel específico...
Regístrate para leer el documento completo.