fgrtg
Páginas: 6 (1280 palabras)
Publicado: 18 de noviembre de 2014
Secciones cónicas.
La trayectoria de una pelota que rebota es una sucesión de parábolas.
En matemáticas, una parábola (del griego παραβολή) es la sección cónica resultante de cortar un cono recto con un plano cuyo ángulo de inclinación respecto al eje de revolución del cono sea igual al presentado por su generatriz. El plano resultará por lo tanto paralelo a dicharecta.nota 1 nota 2 Se define también como el lugar geométrico de los puntos de un plano que equidistan de una recta llamadadirectriz,nota 3 y un punto exterior a ella llamado foco. En geometría proyectiva, la parábola se define como la curva envolvente de las rectas que unen pares de puntos homólogos en una proyectividad semejante o semejanza.
La parábola aparece en muchas ramas de las cienciasaplicadas debido a que su forma se corresponde con las gráficas de lasecuaciones cuadráticas. Por ejemplo, son parábolas las trayectorias ideales de los cuerpos que se mueven bajo la influencia exclusiva de la gravedad (ver movimiento parabólico y trayectoria balística).
Historia[editar]
La tradición indica que las secciones cónicas fueron descubiertas por Menecmo en su estudio del problema dela duplicación del cubo,1 donde demuestra la existencia de una solución mediante el corte de una parábola con una hipérbola, lo cual es confirmado posteriormente por Proclo y Eratóstenes.2
Sin embargo, el primero en usar el término parábola fue Apolonio de Perge en su tratado Cónicas,3 considerada obra cumbre sobre el tema de las matemáticas griegas, y donde se desarrolla el estudio delas tangentes a secciones cónicas.
Si un cono es cortado por un plano a través de su eje, y también es cortado por otro plano que corte la base del cono en una línea recta perpendicular a la base del triángulo axial, y si adicionalmente el diámetro de la sección es paralelo a un lado del triángulo axial, entonces cualquier línea recta que se dibuje desde la sección de un cono a su diámetro paralelo a la seccióncomún del plano cortante y una de las bases del cono, será igual en cuadrado al rectángulo contenido por la línea recta cortada por ella en el diámetro que inicia del vértice de la sección y por otra línea recta que está en razón a la línea recta entre el ángulo del cono y el vértice de la sección que el cuadrado en la base del triángulo axial tiene al rectángulo contenido por los dos ladosrestantes del triángulo. Y tal sección será llamada una parábola
Apolonio de Perge
Es Apolonio quien menciona que un espejo parabólico refleja de forma paralela los rayos emitidos desde su foco, propiedad usada hoy en día en las antenas satelitales. La parábola también fue estudiada por Arquímedes, nuevamente en la búsqueda de una solución para un problema famoso: la cuadratura del círculo, dando comoresultado el libro Sobre la cuadratura de la parábola.
Propiedades geométricas[editar]
Diferentes elementos de una parábola.
Diagrama que muestra la propiedad reflexiva, la directriz (verde), y las líneas que unen el foco y la directriz de la parábola (azul)
Aunque la identificación de parábola con la intersección entre un cono recto y un plano que forme un ángulo con el eje de revolucióndel cono igual al que presenta su generatriz, es exacta, es común definirla también como un lugar geométrico:
Se denomina parábola al lugar geométrico de los puntos de un plano que equidistan de una recta dada, llamada directriz, y de un punto exterior a ella, llamado foco.
De esta forma, una vez fija una recta y un punto se puede construir una parábola que los tenga por foco y directriz deacuerdo a la siguiente construcción. Sea T un punto cualquiera de la recta directriz. Se une con el foco dado F y a continuación se traza la mediatriz (o perpendicular por el punto medio) del segmento TF. La intersección de la mediatriz con la perpendicular por T a la directriz da como resultado un punto P que pertenece a la parábola. Repitiendo el proceso para diferentes puntos T se puede...
Leer documento completo
Regístrate para leer el documento completo.