Fibonacci

Páginas: 9 (2060 palabras) Publicado: 13 de julio de 2015
LEONARDO DE PISA
Leonardo de Pisa, Leonardo Pisano o Leonardo Bigollo (c. 1170 - 1250), también llamado Fibonacci, fue un matemático italiano, famoso por haber difundido en Europa el sistema de numeración indo-arábigo actualmente utilizado, el que emplea notación posicional (de base 10, o decimal) y un dígito de valor nulo: el cero; y por idear la sucesión de Fibonacci.
El apodo de Guglielmo,padre de Leonardo, era Bonacci (simple o bien intencionado). Leonardo recibió póstumamente el apodo de Fibonacci (por filius Bonacci, hijo de Bonacci). Guglielmo dirigía un puesto de comercio en Bugía (según algunas versiones era el cónsul de Pisa), en el norte de África (hoy Bejaia, Argelia), y de niño Leonardo viajó allí para ayudarlo.
Fibonacci tuvo un preceptor árabe y viajó por el Norte deÁfrica. Gracias a ello aprendió el sistema de numeración árabe que a su vez Al-Khwarizmi aprendió de los hindúes, y lo introdujo en Europa con su obra “Liber abaci”.
Consciente de la superioridad de los numerales árabes, Fibonacci viajó a través de los países del Mediterráneo para estudiar con los matemáticos árabes más destacados de ese tiempo, regresando cerca de 1200. En 1202, a los 32 años deedad, publicó lo que había aprendido en el Liber abaci (abaci en el sentido de aritmética y no del ábaco instrumento). Este libro mostró la importancia del nuevo sistema de numeración aplicándolo a la contabilidad comercial, conversión de pesos y medidas, cálculo, intereses, cambio de moneda, y otras numerosas aplicaciones. En estas páginas describe el cero, la notación posicional, la descomposiciónen factores primos, los criterios de divisibilidad. El libro fue recibido con entusiasmo en la Europa ilustrada, y tuvo un impacto profundo en el pensamiento matemático europeo.
Leonardo fue huésped del Emperador Federico II, que se interesaba en las matemáticas y la ciencia en general. En 1240, la República de Pisa lo honra concediéndole un salario permanente (bajo su nombre alternativo deLeonardo Bigollo).
De todas formas Fibonacci ha pasado a la historia por su famosa sucesión la cual representa un buen numero de situaciones practicas.











SUS APORTES A LA MATEMÁTICA
Liber Abaci (Libro del Ábaco). Fue escrito en 1202 y revisado y considerablemente aumentado en 1228. Se divide en quince capítulos. Un capítulo importante está dedicado a las fracciones graduales,3 de las que exponelas propiedades. En ellas basa una teoría de los números fraccionarios y, después de haberlas introducido en los cálculos de números abstractos, las vuelve un instrumento práctico para la obtención de números concretos. Todas las fracciones se presentan a la manera egipcia, es decir, como suma de fracciones con numeradores unitarios y denominadores no repetidos. La única excepción es la fracción , que no se descompone. Incluye una tabla para descomposición en fracciones unitarias que se lee derecha a izquierda, como en las lenguas semíticas.
Practica Geometriae. (Geometría práctica) Está dividido en siete capítulos en los que aborda problemas de geometría dimensional referente a figuras planas y sólidas. Es la obra más avanzada en su tipo que se encuentra en esa época en Occidente.

Flossuper solutionibus quarumdam questionum ad numerum et ad geometricam pertinentium. (Ramillete de soluciones de ciertas cuestiones relativas al número y a la geometría) Comprende quince problemas de análisis determinado e indeterminado de primer grado. Dos de esos problemas habían sido propuestos como desafío a Leonardo por Juan de Palermo, matemático de la corte del emperador Federico II.

Carta aTeodoro. Es una simple carta que Leonardo envía a Teodoro, astrólogo de la corte de Federico II. En ella se resuelven dos problemas. El primero es algebraico y consiste en encontrar objetos de diferentes proporciones. Estos objetos llevan los nombres de pájaros de diversas especies. Paul Ver Eecke, quien tradujo el Liber Quadratorum al francés desde el original latino de la edición de 1228,...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Fibonacci
  • Fibonacci
  • Fibonacci
  • Fibonacci
  • fibonacci
  • fibonacci
  • Fibonacci
  • Fibonacci

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS