File 3743165c6d 3895 Guia Na2 Vectores

Páginas: 6 (1254 palabras) Publicado: 25 de marzo de 2015
Problemas de Vectores
1.-Las componentes de un vector, con respecto a un sistema de coordenadas cartesianas
ortogonales, son Ax = −25 unidades y Ay = 40 unidades. Encontrar la magnitud y la dirección del
vector. Hacer un diagrama.
2.-Encuentre las componentes rectangulares de un vector de 50 unidades de longitud, cuando
este forma un ángulo de 30º con respecto al eje x positivo.
3.-Consideremosdos vectores en un plano de coordenadas cartesianas ortogonales. El vector A ,
de magnitud 5 unidades, forma un ángulo de 45º respecto al eje +x; y el vector, de magnitud 10
unidades, forma un ángulo de 320º respecto al eje +x. Encuentre: B
4.- Una partícula se mueve en el plano xy, desde un punto que tiene coordenadas cartesianas (−3,
−5) hasta un punto con coordenadas (−1, 8).
(a) Hacer undiagrama de la situación.
(b) Encontrar un vector que una ambos puntos, y calcular su magnitud y dirección.
5.- Un perro anda un busca de un hueso, camina 3.5 m hacia el sur, después gira en un ángulo de
150º y camina 8.2 m al noreste, y finalmente 15 m al oeste. Encuentre un vector que una el
punto de partida del perro con el punto de llegada.
6.- Dos vectores de 50 y 40 unidades de longitud(magnitud), forman entre si un ángulo de 120º
Encontrar:
(a) La magnitud del vector resta resultante entre ambos, y su ángulo (para los dos casos) con
respecto al vector de mayor longitud.
(b) La magnitud del vector suma resultante entre ambos, y su ángulo con respecto al vector de
mayor longitud.
7.- Dos vectores, A y B , de magnitud 4 y 3 respectivamente, forman entre si un ángulo de 150º
(a) Determine laproyección del vector A sobre el vector B .
(b) Encuentre el área del triangulo formado al unir los extremos de los vectores.
8.-Para encontrar un tesoro, un pirata camina dos pasos al norte, luego 3 al este, después 6 al
sur, luego 5 al noroeste en 45º , finalmente 4 al norte. ¿A qué distancia del punto de partida
estaba el tesoro y en que ángulo respecto del norte?
9.-Dados los vectores: A (5,3,4) y B  6iˆ  ˆj  2kˆ , calcular a) El producto punto o escalar b) el
ángulo que forman entre ellos c) los cosenos directores del vector
10.-Un vector A tiene de componentes (1, 2,3), otro vector B tiene de módulo 31/2 y su
componente ( bx ) vale 1. Determinar B para que sea perpendicular a A .

Curso Inicial Física UTFSM Prof.-Víctor Garrido C 2012

Página 1

11.-Dado el vector: C  3iˆ  4ˆj  5kˆ
a) Hallar el vector unitario en la dirección y sentido opuesto de C
b) Determinar el ángulo que forma el vector C con el eje OX, y el valor de su proyección sobre
dicho eje.
12.-En un sistema de ejes coordenados cartesianos ortogonales, un vector A , de magnitud 150
unidades, en el plano xy, forma un ángulo de 120º con el eje x positivo. Un segundo vector, B
tiene una magnitud de 140unidades y forma un ángulo de 35º con el eje x positivo, pero está en
el plano xz.
(a) Encuentre un vector perpendicular al plano formado por estos dos vectores.
(b) Encuentre un vector que sumado al vector A de como resultante él B .
13.-Se tiene un plano definido por los vectores E  2iˆ  3 ˆj y B  3iˆ  4 ˆj  kˆ . Determine las
componentes de un vector unitario y perpendicular a dicho plano.14.-Se tienen los vectores R  iˆ  3 ˆj  kˆ y V  3iˆ  5 ˆj
Encuentre un vector perpendicular a ambos cuyo módulo (magnitud) sea igual a 15.
15.-Un vector tiene por origen respecto de cierto sistema de referencia el punto O (-1,2,0) y de extremo
P(3,-1,2). Calcular: a) Componentes del vector OP b)
unitario en la dirección de él pero de sentido contrario

Módulos y ángulos directores. c) Un vector16.-Dados los vectores a (2,4,6) y b (1,-2,3). Calcular: a) El vector suma a  b , su módulo y ángulos
directores. b) El vector diferencia a  b y el vector unitario que define su dirección y sentido.
17.-Dados los vectores: a (1,-1,2) y b (-1,3,4). Calcular: a) El producto escalar de ambos vectores.
b) El ángulo que forman. c) La proyección de b sobre a.

18.-Dados los vectores a (1,3,-2) y b...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • vector fila
  • GUIA FILO
  • Guía De Vectores
  • GUIA Vectores
  • GUIA DE VECTORES
  • GUIA VECTORES
  • GUIA DE VECTORES
  • GUIA DE VECTORES

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS