Fisica
a) ¿Cuánto tarda en oír la explosión?.
b) ¿A qué distancia se encontraba el objetivo?.
Se recuerda que en tiro parabólico y tiro oblicuo el movimiento en el eje "x" es rectilíneo uniforme, mientras en el eje "y" es uniformemente variado (asociar con tiro vertical y caída libre).
Dondeno se indica se emplea g = 10 m/s ².
Datos:
vx = 1080 km/h = 300 m/s g = 10 m/s ².
v0y = 0 m/s
h = 500 m
Ecuaciones:
(1) v fy = v0y + g.t
(2) h = v0y.t + g.t ²/2
(3) vx = Δx/Δt
El gráfico es:
El tiempo que tarda en caer la bomba lo calculamos de la ecuación (2):
t = 10 s
La distancia recorrida por la bomba a lo largo del eje "x" será:
vx = x/t
x = vx.t
x = (300 m/s).(10 s)
x =3000 m
Es la respuesta al punto (b).
En el mismo instante que la bomba toca el suelo el avión pasa sobre ella, es decir 500 m sobre la explosión.
Si la velocidad del sonido es 330 m/s:
vx = x/t
t = x/vx
t = (500 m)/(330 m/s)
t = 1,52 s
La respuesta al punto (a) es:
t = 10s + 1,52 s
t = 11,52 s
Problema n° 2) Un avión que vuela a 2000 m de altura con una velocidad de 800 km/h suelta unabomba cuando se encuentra a 5000 m del objetivo. Determinar:
a) ¿A qué distancia del objetivo cae la bomba?.
b) ¿Cuánto tarda la bomba en llegar al suelo?.
c) ¿Dónde esta el avión al explotar la bomba?.
Se recuerda que en tiro parabólico y tiro oblicuo el movimiento en el eje "x" es rectilíneo uniforme, mientras en el eje "y" es uniformemente variado (asociar con tiro vertical y caída libre).Donde no se indica se emplea g = 10 m/s ².
Datos:
vx = 800 km/h = 222,22 m/s
v0y = 0 m/s
h = 2000 m
d = 5000 m
Ecuaciones:
(1) v fy = v0y + g.t
(2) h = v0y.t + g.t ²/2
(3) vx = Δx/Δt
El gráfico es:
a) Primero calculamos el tiempo que demora en caer, de la ecuación (2):
h = g.t ²/2
t = √2.h/g
t = 20 s
Luego con la ecuación (3) obtenemos el punto de impacto:
vx = x/t
x = vx.tx = (222,22 m/s).(20 s)
x = 444,44 m
Por lo tanto el proyectil cae a:
d = 5000 m - 444,44 m
d = 555,55 m
b) Es el tiempo hallado anteriormente:
t = 20 s
c) Sobre la bomba, ambos mantienen la misma velocidad en el eje "x".
Problema n° 3) Un proyectil es disparado desde un acantilado de 20 m de altura en dirección paralela al río, éste hace impacto en el agua a 2000 m del lugar del disparo.Determinar:
a) ¿Qué velocidad inicial tenía el proyectil?.
b) ¿Cuánto tardó en tocar el agua?.
Se recuerda que en tiro parabólico y tiro oblicuo el movimiento en el eje "x" es rectilíneo uniforme, mientras en el eje "y" es uniformemente variado (asociar con tiro vertical y caída libre).
Donde no se indica se emplea g = 10 m/s ².
Datos:
v0y = 0 m/s
h = 20 m
d = 2000 m
Ecuaciones:
(1)v fy = v0y + g.t
(2) h = v0y.t + g.t ²/2
(3) vx = Δx/Δt
El gráfico es:
a) De la ecuación (3) despejamos el tiempo:
t = x/vx (4)
y reemplazamos la (4) en la (2):
vx = 1000 m/s
b) De la ecuación (4):
t = x/vx
t = (2000 m)/(1000 m/s)
t = 2 s
Problema n° 4) Una pelota esta rodando con velocidad constante sobre una mesa de 2 m de altura, a los 0,5 s de haberse caído de la mesa esta a 0,2m de ella. Calcular:
a) ¿Qué velocidad traía?.
b) ¿A qué distancia de la mesa estará al llegar al suelo?.
c) ¿Cuál era su distancia al suelo a los 0,5 s?.
Se recuerda que en tiro parabólico y tiro oblicuo el movimiento en el eje "x" es rectilíneo uniforme, mientras en el eje "y" es uniformemente variado (asociar con tiro vertical y caída libre).
Donde no se indica se emplea g = 10 m/s ².Datos:
v0y = 0 m/s
h = 2 m
t = 0,5 s
d = 0,2 m
Ecuaciones:
(1) v fy = v0y + g.t
(2) h = v0y.t + g.t ²/2
(3) vx = Δx/Δt
El gráfico es:
a) De la ecuación (3):
vx = (0,2 m)/(0,5 s)
vx = 0,4 m/s
b) De la ecuación (2) hallamos el tiempo que tarda en caer:
h = g.t ²/2
t = √2.h/g
Reemplazamos en la ecuación (3):
x = 0,253 m
c) Aplicando la ecuación (2) obtenemos la distancia...
Regístrate para leer el documento completo.