forma canonica
La ecuación canónica o segmentaria de la recta es la expresión de la recta en función de los segmentos que ésta determina sobre los ejes decoordenadas.
a es la abscisa en el origen de la recta.
b es la ordenada en el origen de la recta.
Los valores de a y de b se se pueden obtener de la ecuación general.
Si y =0 resulta x = a.
Si x = 0 resulta y = b.
Una recta carece de la forma canónica en los siguientes casos:
1 Recta paralela a OX, que tiene de ecuación y = n
2 Recta paralela aOY, que tiene de ecuación x = k
3 Recta que pasa por el origen, que tiene de ecuación y = mx.
Ejemplo:
1 Una recta determina sobre los ejes coordenados, segmentos de 5 y 3unidades, respectivamente. Hallar su ecuación.
2 Hallar la ecuación canónica de la recta que pasa por P(−2, 1) y tiene por vector director v = (3, −4).
Hallamos la ecuación enforma continua:
Pasamos a la general:
−4x −8 = 3y -3 4x + 3y + 5 = 0
Si y = 0 x = −5/4 = a.
Si x = 0 y = −5/3 = b.
La recta r ≡ x − y + 4 = 0 forma con los ejes untriángulo del que se pide su área.
La recta forma un triángulo rectángulo con el origen y sus catetos son la abscisa y la ordenada en el origen.
Si y = 0 x = −4 = a.
Si x = 0y = 4 = b.
La ecuación canónica es:
El área es:
3 Una recta pasa por el punto A(1. 5) y determina con los ejes de coordenadas un triángulo de 18 u2 de superficie.¿Cuál es la ecuación de la recta?
Aplicamos la ecuación canónica:
El área del triángulo es:
Resolvemos el sistema:
4 Sabemos que una recta pasa por el puntoA(3, 2) y que determina sobre los ejes coordenados, segmentos de doble longitud en el eje de abscisas, que en el de ordenadas. Hallar la ecuación de esta recta.
Regístrate para leer el documento completo.