FORMULARIO ALGEBRA Primer Parcial

Páginas: 6 (1328 palabras) Publicado: 9 de abril de 2015
PROPIEDADES DE LOS NUMEROS REALES

Propiedades de los números reales R con respecto a la adición.
Propiedad de cerradura
Para cualesquiera , se cumple que:
Propiedad conmutativa
Para cualesquiera , se cumple que: =
Propiedad asociativa
Para cualesquiera , se cumple que:
=
Existencia del inverso aditivo
Para cualesquiera , existe , llamado inverso aditivo, que cumple con la condición: .Neutro aditivo
Para cualesquiera , existe , llamado neutro aditivo, que cumple con la condición:

Propiedades de los números reales R con respecto a la adición.
Propiedad de cerradura
Para cualesquiera , se cumple que
Propiedad conmutativa
Para cualesquiera , se cumple que =
Propiedad asociativa
Para cualesquiera , se cumple que:
=.
Propiedad de la existencia del neutro multiplicativo
Paracualesquiera , existe el neutro multiplicativo , que cumple con la condición:

Propiedad del inverso multiplicativo
Para cualesquiera y , existe el inverso multiplicativo , tal que =1.
Propiedad distributiva
Para cualesquiera , se cumple que:




OPERACIONES CON VECTORES

En los vectores están definidas dos operaciones:
1.- La suma de vectores
2.- La multiplicación por un escalarPROPIEDADES DE LAS OPERACIONES CON VECTORES

Sea , , vectores en R2 y sean k, p escalares reales.




Atención!!! Todo lo que se diga para R2 será también para Rn





NORMA(MAGNITUD O LONGITUD) DE UN VECTOR




Propiedades de la norma (o longitud)

1.- |||| = ||−||
2.- ||x || = |x| ||||, para todo x ϵ R
3.- Si a = entonces |||| = 0
4.- Si a ≠ entonces |||| > 0
5.- || - || = || - ||
PROPIEDADES DE LA NORMA (O LONGITUD)


VECTOR UNITARIO




VECTOR NULO






COMPONENTES DE UN VECTOR








IGUALDAD ENTRE DOS VECTORES












PARALELISMO DE VECTORESPRODUCTO ESCALAR





PROPIEDADES BÁSICAS DEL PRODUCTO ESCALAR.














ORTOGONALIDAD DE VECTORES


















PRODUCTO VECTORIAL (PRODUCTO CRUZ O PRODUCTO EXTERNO)











Los signos de un determinante son:



Por definición,










PROPIEDADES DEL PRODUCTO VECTORIAL


PV1. )= -()

PV2. )

PV3. )

PV4.

PV5. || || =|| ||

Geométricamente: || || es el área de uh paralelogramo con vectores formando lados adyacentes.

PV6. El triple producto escalar de tres vectores , y es un escalar:

. ( )
Geométricamente: . ( ) ---- se llama triple producto escalar, es el volumen del paralelepípedo, cuyos lados son , y .

PV7.El triple producto vectorial de tresvectores , y es el vector.
(

PV8. ()), .



DIRECCION DE UN VECTOR
Por definición, si = (, entonces la dirección del vector es el ángulo θ, que forma el vector con respecto al eje x, en el sentido contrario a las manecillas del reloj.















ANGULO ENTRE VECTORES
Por definición, si y son dos vectores deferentes de , entonces el ánguloentre y , es el ángulo no negativo más pequeño y




1.- Si : ; y y tienen el mismo sentido, entonces el ángulo entre y es =0°
















2.- Si : ; y y tienen sentidos opuestos, entonces el ángulo entre y es =180°




























PROYECCION ORTOGONAL
Por definición, la proyección ortogonal de sobre es un vector denotado por = , que se define por:






El escalarse llama componente de en la dirección de










DEFINICIÓN DE COMPLEJO

COMPLEJO NULO

IGUALDAD DE COMPLEJOS






COMPLEJO CONJUGADO














REPRESENTACIÓN GEOMÉTRICA DE LOS COMPLEJOS
Si los números están en correspondencia uno-uno con los puntos del plano cartesiano, entonces el plano es llamado plano complejo o el plano . Los ejes coordenados reciben el nombre de eje real (eje...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Formulario Primer Parcial
  • Formulario primer Parcial FAF
  • Formulario algebra
  • Formulario de algebra
  • Formulario Algebra
  • Formulario de Algebra
  • Formulario algebra
  • Formulario De Algebra

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS