Formulario De Derivadas
a, b, c y n son constantes
CASO
#
= derivada de “q”
u, v, w, etc. son funciones de x
FORMULA
#
CASO
FORMULA
1
f(x) = c=0
19
f(x) = sinh u
= cosh u
2
f(x) = x
=1
20
f(x) = cosh u
= sinh u
3
f(x) = xn
= nxn-1
21
f(x) = tanh u
= sec h2u
4
f(x) =axn
=a
22
f(x) = coth u
= -csc h2u
5
f(x) = un
= nun-1
23
f(x) = sec hu
= -sec hu tanh u
6
f(x) = uv
= vuv-1
24
f(x) = csc hu
=-csc hu coth u
7
f(x) = uv
=v
25
f(x) = arcsin u
=
8
f(x) =
=
26
f(x) = arccos u
=-
9
f(x) = sin u
= cos u
27
f(x) = arctan u=
10
f(x) = cos u
= -sin u
28
f(x) = arccot u
=-
11
f(x) = tan u
= sec2 u
29
f(x) = arcsec u
=
12
f(x) = cot u
= -csc2 u
30f(x) = arccsc u
=-
13
f(x) = sec u
= sec u tan u
31
f(x) = arcsin hu
=
14
f(x) = csc u
= -csc u cot u
32
f(x) = arccos hu
=
15
f(x) =eu
= eu
33
f(x) = arctan hu
=
16
f(x) = au
= au ln a
34
f(x) = arccot hu
=
17
f(x) = ln u
=
35
f(x) = arcsec hu
=-
18
f(x)= logau
=
36
f(x) = arccsc hu
=
+ u v ln u
+u
√
√
√
√
√
√
√
√
FORMULAS TRIGONOMETRICAS
sin b =
cos b =
tan b =
tan a =
cscb =
sec b =
cot b =
cot a =
sin2φ + cos2φ = 1
1 + tan2φ = sec2φ
1 + cot2φ = csc2φ
log ab = log a + log b
log = log a – log b
log ab = b log a
Siuna función f satisface f (-x) = f(x) para cualquier numero x en este dominio entonces f se denomina “función par”
cos(-φ) = cos φ
x=
x = x1 + r ( x2 – x1 )
=r
Regístrate para leer el documento completo.