Formulario de maderas
For various static loading conditions
For meaning ofsymbols, seepage 2-111.
1.
SIMPLE BEAM-UNIFORMLY DISTRIBUTED LOAD
Total Equiv. Uniform Load R-V Vx M max. ( at center ) Mx - wi
~.
'-""1 .:
BEAM D~GRAMS AND FORMULAS
For various static loading conditions
For meaning ofsymbols, see page 2-lll.
t
4.
.~
2
-wei-x)
1
t
i
;
~
SIMPLEBEAM-UNIFORM LOAD PARTIALLY DiSTRIBUTED
R, = V, Ro = Vo
( max. when a
c) ( max. when a > c)
< > a and < (a + b»)
)
wb = 2T (2c + b) wb =2T(2a+b)
= =
=
1
R\~-I
1'".
Shear
Vx
( when x
R,-w (x-a) R, (a +
RIX
-8
_ ~x (I-x)
wl O
v,llllih' I
I
M max. ( at x
= a + ~1
<
:~)
V2 Mx Mx Mx
e
when x
a)
( when x ( when x
> a and < (a +b») > (a + b») .
= Rtx--'i- (x-a)O = R.(l-x)
L\max. (at center)
~x
- 384Ef'
=
5 wi'
wx 241::1 (I' -- 2i~0 + x')
I
r
----------
---
'\ i) 1/
2.
----------
I
SIMPLE BEAM-LOAD INCREASING UNIFORMLY TO ONE END
Total Equiv. Uniform Load R, = V, . Ro = Vo max.
= =
=
5.
SIMPLE BEAM-UNIFORM LOAD PARTIALLY DiSTRIBUTED AT ONE END
"
9,3
W T
l~~ =a_
RI
=
VI max.
= ~~ (21-a)
= =
1.0264W
I Ro = Vo Vx (when x < a)
2T"'
R1-wx R,o
wa a
2W -3 W Wx o
Mmax.(atx=
V. M x
v«
V,
=T-II""
2WI - -----c=
9-013
~
e
:1)
<
=
2W""
wxo Ro (I-x)
when x
a)
= R,x- 2
=
* I' I 1TIJ>..-1'J
I I I
I '"
I M max. ( at x = .,_ = .5n41 ) ,3 Mx arnax.
Mx
.1283 WI j.x .:l.x
(Whenx
> a)
(When x <
= Wx (IO-xO) 31 0
a) (when x> a)
A wx = __ ( a O(21-a)0-2ax 2(21-a)+lx' )
= 24EII wao(l-x) 24EII (4xl- 2. 2
-
a O)
(atx=I~I-'\)!s-.51931)=
=
.01304
~:.
(3x"-101 0xo+71')
~x
3.
•
~ l80Eli0
6.
SIMPLE BEAM-UNIFORM LOAD PARTIALLY DiSTRIBUTED AT EACH END
R1
=
V,
SIMPLE BEAM-LOAD INCREASING UNIFORMLY TO CENTER
Total Equiv.Uniform Load R-V
=-3
Ro = Vo
w,a(21-a) +WICo 21 woc(21- c) + w,a o 21
4W
-T
(when x
W
Vx
b)
Rl
=
Vs,(maxo when a
<
= V, = V.
(when x > a and < (1- b»)
(max. when RI < PI)
P, (I-a) + P.b =---1
I~
=j
=
-j
P,a + Pz (1- b) I
M max. ( at point of load)
.' I I ! ! ,
Pab =-1 Pbx =-1 whena>b) Pab (a + 2b) " 3a (a + 2b) 27 EI I Pa'b'
b2 -
VxV,
= R, - P,
II I I
I I I I I I i
I 'v Mx z
11m ax.
(when x < a
)
I I II It
j
I
M,
M. Mx
= R1. a
= R.b
~
(atx=~a(a~2b)
( at poi nt of load )
(when
x
( max. when R. < P.) (when x < a) (when x > a and < (I-b»)
aa
Moment
.ax
<
a
)
- """"3ETl Pbx =6ETT (I' -
=
R,x
x')
Moment
Mx
= R,x-P , (x-a)
9.
SIMPLEBEAM-TWO EQUAL CONCENTRATED LOADS SYMMETRICALLY PLACED
Total Equiv. Uniform Load
8 Pa *-1
12.
BEAM FIXED AT ONE END, SUPPORTED AT OTHER UNIFORMLY DISTRIBUTED LOAD
Total Equiv. Uniform Load
Wt
=
wi
l: ' T T
l R
R-V
M max.( between loads) Mx
(When x
-.,%
o//--
R 1 = VI
J -
.
.
-
p
=
tlllllll!1 ! ling R \ ~;%R2
=~ 8
_ 5wl - -8
-V
Pa Px~ v«
MI
z max.
...
(atx =
=
_
Rl-WX
<
a) a)
(1-
=
M max . . .
_. -8
wl Z
'it
amax.
(at center)
Pa = 24EI (31'-4a') = a»)
=
i
_ I)
9
R1X-
- 128 wi'
wx -2
2
IIx IIx
e
Mx
.....
=
when x <
6IT (3Ia-3a'-x') 6IT (3Ix-3x' Pa a')
Px
amax. (atx = /6 (1 +"'33) = .42151)
185ET
,J.:" .
( when x > a and
.:1)(..
........•
wx = 48EI (I' - 31x2 + 2x')
AMERICAN
INSTITUTE OF STEEL CONSTRUCTION
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1
BEAM DIAGRAMS AND FORMULAS For various static loading conditions
For meaning of symbols. see page 2-[[[
'A• . . ,iWst
,.;
BEAM DIAGRAMS AND FORMULAS For various static loading conditions
For meaning 01 symbols. S~ :.~~ 2·:::...
Regístrate para leer el documento completo.