Formulario De PRueba
CONSTANTES
B z (x,t) = B0 cos(kx − ω t)
3 108 [m / s] ; e ≈ 1,6 10− 19 [C]
c
k c = 1 4πε0
e2 4πε0
B0 = E0 / v ;
9, 109 [Nm2 / C2 ]
4π 10− 7 [N / A 2 ]1,44[eV ⋅ nm] ; µ0
NA = 6,0 1 023 [m o l− 1 ]
ÓPTICA GEOMÉTRICA
k B = 1,38 10 − 23 [J / K] = 1/ 12000[eV / K]
n = c/v ;
1[eV] = 1,6 10 − 19 [J]
1[ u] = 1,66 10 − 27 [kg] = 931,5 MeV / c 2
K=
; p = mv ; ac =
2
(
F = q E + v×B
f = R / 2 : espejos
v2
R
p
1
; E = K+U
m v2 =
2
2m
mgh
U=
)
1
2
kx 2
q ∆V
ECUACIONES DE MAXWELL
E dA = Q / ε0 ;
Dos fuentes en fase:
φ
I = I0 cos2
; φ = k d senθ
2
m λ : m áxim o s
d
B ds = µ0I + µ0 ε0 φE
dt
;
B dA
w B = B2 / 2µ0
∂ Ey
1
= 2
2
∂x
v
∂ Ey
∂ t2
∂ 2Bz
1
= 2
∂ x2
v
∂ 2B z
;
∂t2
1
λ : m ínim os
2
sen N φ / 2
sen φ / 2
2
; φ = k d sen θDifracción una rendija : I = I0
k
S = ExB / µ0
B
E y (x, t) = E0 cos(kx − ω t) ;
m+
sen β / 2
β/2
2
β = k a sen θ ; a sen θ = m λ : m ínim os.
E
2
v=
( )
Interferencia N rendijas:
I = I0ONDA ELECTROMAGNÉTICA
2
ÓPTICA ONDULATORIA
d sen θ =
E dA ; φB =
w E = ε ⋅ E2 / 2
1
1
1
: len te s
= ( n − 1)
−
f
R1 R 2
B dA = 0
d
E ds = − φB
dt
φE =
θr = θ1
1 1 1
+ =
s s' ƒ
CLÁSICA
dpdt
n1λ1 = n2 λ 2
n1 sen θ1 = n2 sen θ 2 ;
1[ f m] = 10 − 15 [m]
Fneta =
1
v ε E02 ; S = P / A
2
S = I = v wEB =
Energia : ∆E = S ⋅ A ⋅ ∆t ;
Momentum : ∆ p = ∆ E c
= h / 2π
h ⋅ c = 1240 [eV ⋅nm] ;
n = c/v
ω = kv ↔ v = λ f , ω = 2π f , k = 2π / λ
h = 6,6 10 − 34 [J s] = 4,1 10 − 15 [eV s]
FÍSICA
DE FIS 140
1
εµ
RED DE DIFRACCIÓN: dsen θ = m λ : m áxim os.
POLARIZACIÓN:
RESOLUCIÓN:I = I0 cos2 α
D sen θ = 1,22λ
CUÁNTICA
p2
h
1
2
λB =
; E = hƒ ; K = m v =
p
2
2m
−3
λmT = 3 ⋅ 10 [m ⋅ K ] ;
RELATIVIDAD ESPECIAL
x ' = γ ( x − vt ) ; y ' = y
t ' = γ ( t − v x / c2 ) ; γ =
hƒ = Kmáx. + φ0
λ '− λ = λ C (1 − cos θ ) ;
h
= 2, 4 ⋅ 1 0 − 1 2 [m] : e lec tro n
mc
2dsen θ = m λ ;
∆ x ∆ px ≥ h 4 π
λC =
∂Ψ
−
∇ + U Ψ ( r,t ) = i
.
2m
∂t
2
2
Ψ ( x,t ) = ψ ( x ) e −iEt /
d2 ψ
+...
Regístrate para leer el documento completo.