formulas
El grado de un monomio es la suma de todos los exponentes de las letras o variables.
El grado de 2x2 y3 z es: 2 + 3 + 1 = 6
Grado de un polinomio
El grado de un polinomio P(x) es el mayor exponente al que se encuentra elevada la variable x.
Polinomio de grado cero
P(x) = 2
Polinomio de primer grado
P(x) = 3x + 2
Polinomio de segundo grado
P(x) = 2x2+ 3x + 2Polinomio de tercer grado
P(x) = x3 - 2x2+ 3x + 2
Polinomio de cuarto grado
P(x) = x4 + x3 - 2x2+ 3x + 2
Grado de una ecuación
El grado de una ecuación es el mayor de los grados de los monomios que forman sus miembros.
5x + 3 = 2x +1 Ecuación de primer grado.
5x + 3 = 2x2 + x Ecuación de segundo grado.
5x3 + 3 = 2x +x2 Ecuación de tercer grado.
5x3 + 3= 2x4 +1 Ecuación de cuarto grado.
Varianza y desviación estándar
La desviación sólo significa qué tan lejos de lo normal
Desviación estándar
La desviación estándar (σ) mide cuánto se separan los datos.
La fórmula es fácil: es la raíz cuadrada de la varianza. Así que, "¿qué es la varianza?"
Varianza
la varianza (que es el cuadrado de la desviación estándar: σ2) se defineasí:
Es la media de las diferencias con la media elevadas al cuadrado.
En otras palabras, sigue estos pasos:
1. Calcula la media (el promedio de los números)
2. Ahora, por cada número resta la media y eleva el resultado al cuadrado (la diferencia elevada al cuadrado).
3. Ahora calcula la media de esas diferencias al cuadrado. (¿Por qué al cuadrado?)
Ejemplo
Tú y tus amigos habéis medido lasalturas de vuestros perros (en milímetros):
Las alturas (de los hombros) son: 600mm, 470mm, 170mm, 430mm y 300mm.
Calcula la media, la varianza y la desviación estándar.
Respuesta:
Media =
600 + 470 + 170 + 430 + 300
=
1970
= 394
5
5
así que la altura media es 394 mm. Vamos a dibujar esto en el gráfico:
Ahora calculamos la diferencia de cada altura con lamedia:
Para calcular la varianza, toma cada diferencia, elévala al cuadrado, y haz la media:
Varianza: σ2 =
2062 + 762 + (-224)2 + 362 + (-94)2
=
108,520
= 21,704
5
5
Así que la varianza es 21,704.
Y la desviación estándar es la raíz de la varianza, así que:
Desviación estándar: σ = √21,704 = 147
y lo bueno de la desviación estándar es que es útil: ahoraveremos qué alturas están a distancia menos de la desviación estándar (147mm) de la media:
Así que usando la desviación estándar tenemos una manera "estándar" de saber qué es normal, o extra grande o extra pequeño.
Los Rottweilers son perros grandes. Y los Dachsunds son un poco menudos... ¡pero que no se enteren!
*Nota: ¿por qué al cuadrado?
Elevar cada diferencia al cuadrado hace que todos losnúmeros sean positivos (para evitar que los números negativos reduzcan la varianza)
Y también hacen que las diferencias grandes se destaquen. Por ejemplo 1002=10,000 es mucho más grande que 502=2,500.
Pero elevarlas al cuadrado hace que la respuesta sea muy grande, así que lo deshacemos (con la raíz cuadrada) y así la desviación estándar es mucho más útil.
Medidas de posición
Las medidas de posición dividen un conjunto de datos en grupos con el mismo número de individuos.
Para calcular las medidas de posición es necesario que los datos estén ordenados de menor a mayor.
La medidas de posición son:
Cuartiles
Los cuartiles son los tres valores de la variable que dividen a un conjunto dedatos ordenados en cuatro partes iguales.
Q1, Q2 y Q3 determinan los valorescorrespondientes al 25%, al 50% y al 75% de los datos.
Q2 coincide con la mediana.
Cálculo de los cuartiles
1 Ordenamos los datos de menor a mayor.
2 Buscamos el lugar que ocupa cada cuartil mediante la expresión .
Número impar de datos
2, 5, 3, 6, 7, 4, 9
Número par de datos
2, 5, 3, 4, 6, 7, 1, 9
Cálculo de los cuartiles para datos agrupados
En primer lugar buscamos la clase donde se...
Regístrate para leer el documento completo.