funcion lineal

Páginas: 3 (631 palabras) Publicado: 27 de marzo de 2014
Para otros usos de este término, véase Función lineal (desambiguación).
No debe confundirse con Aplicación lineal.

En geometría y el álgebra elemental, una función lineal es una funciónpolinómica de primer grado; es decir, una función cuya representación en el plano cartesiano es una línea recta. Esta función se puede escribir como:

f(x) = m x + b \,

donde m y b son constantesreales y x es una variable real. La constante m es la pendiente de la recta, y b es el punto de corte de la recta con el eje y. Si se modifica m entonces se modifica la inclinación de la recta, y si semodifica b, entonces la línea se desplazará hacia arriba o hacia abajo.

Algunos autores llaman función lineal a aquella con b= 0 de la forma:

f(x) = m x \;

mientras que llaman función afína la que tiene la forma:

f(x) = m x + b \;

cuando b es distinto de cero.

Índice

1 Ejemplo
2 Funciones lineales de varias variables
3 Véase también
4 Referenciasbibliográficas
5 Enlaces externos

Ejemplo
Dos rectas y sus ecuaciones en coordenadas cartesianas.

Una función lineal de una única variable dependiente x es de la forma:

y = m \; x + b\,

que se conoce como ecuación de la recta en el plano x,y.

En la figura se ven dos rectas, que corresponden a las ecuaciones lineales siguientes:

y = 0,5\; {x} + 2 \,

en esta rectael parámetro m= 1/2 por tanto de pendiente 1/2, es decir, cuando aumentamos x en una unidad entonces y aumenta en 1/2 unidad, el valor de b es 2, luego la recta corta el eje y en el punto y= 2.

Enla ecuación:

y = -{x} + 5 \,

la pendiente de la recta es el parámetro m= -1, es decir, cuando el valor de x aumenta en una unidad, el valor de y disminuye en una unidad; el corte con eleje y es en y= 5, dado que el valor de b= 5.

En una recta el valor de m se corresponde al ángulo \theta\, de inclinación de la recta con el eje de las x a través de la expresión:

m = \tan...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • funcion lineal
  • Función Lineal
  • funcion lineal
  • funciones lineales
  • Función Lineal
  • Funcion lineal
  • funciones lineales
  • funcion lineal

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS