Funcionee

Páginas: 17 (4063 palabras) Publicado: 8 de junio de 2011
Correspondencia es equivalente a Relación. En nuestra lengua, decir “en relación a”, es equivalente a decir “corresponde a”.
Ejemplos:
En una tienda comercial, cada artículo está relacionado con su precio; o sea, a cada artículo le corresponde un precio.
En la guía telefónica, cada cliente está relacionado con un número; o sea, a cada nombre de la guía le corresponde un número. 
Definiciónmatemática de Relación y de Función
En matemática, Relación es la correspondencia de un primer conjunto, llamado Dominio, con un segundo conjunto, llamado Recorrido o Rango, de manera que a cada elemento del Dominio le corresponde uno o más elementos del Recorrido o Rango.
Por su parte, una Función es una relación a la cual se añade la condición de que a cada valor del Dominio le corresponde uno ysólo un valor del Recorrido.
De las definiciones anteriores podemos deducir que todas las funciones son relaciones, pero no todas las relaciones son funciones.
También debemos agregar que toda ecuación es una Relación, pero no toda ecuación es una Función.
Todas las Relaciones pueden ser graficadas en el Plano Cartesiano.
 Dados dos conjuntos A y B una relación definida de A en B es unconjunto de parejas ordenadas (par ordenado) que hacen verdadera una proposición; dicho de otro modo, una relación es cualquier subconjunto del producto cartesiano A x B
Ejemplo 1.
Si A = {2, 3}  y B = {1, 4, 5}, encontrar tres relaciones definidas de A en B.
El producto cartesiano de A x B está conformado por las siguientes parejas o pares ordenados:
                                        A x B ={(2, 1), (2, 4), (2, 5), (3, 1), (3, 4), (3, 5)}
Y cada uno de los siguientes conjuntos corresponde a relaciones definidas de A en B:
                                        R1 =  {(2, 1), (3, 1)}
                                        R2 =  {(2, 4), (2, 5), (3, 4), (3, 5)}
                                        R3 =  {(2, 4), (3, 5)}
La relación R1 se puede definir como el conjunto depares cuyo segundo elemento es 1, esto es, R1 =  {(x, y) / y = 1}.
La relación R2 está formada por los pares cuyo primer componente es menor que el segundo componente, R2 = {(x, y) / x < y}
Y la relación R3 está conformada por todos los pares que cumplen con que el segundo componente es dos unidades mayor que el primer componente, dicho de otro modo, R3 =  {(x,  y) / y = x + 2}
Ejemplo 2.
Dadoslos conjuntos C = {1, –3} y D = {2, 3, 6}, encontrar todos los pares ordenados (x, y) que satisfagan la relación
                                     R =  {(x, y) / x + y = 3}
Solución
El producto cartesiano de C x D está formado por los siguientes pares ordenados
                                      C x D = {(1, 2), (1, 3), (1, 6),  (–3, 2), (–3, 3),  (–3, 6)}
Las parejas ordenadas quesatisfacen que la suma de sus componentes sea igual a 3 son:
                                     R =  {(1, 2), (–3, 6)}
Toda relación queda definida si se conoce el conjunto de partida, el conjunto de llegada y la regla mediante la cual se asocian los elementos. En el ejemplo anterior, el conjunto de partida corresponde al conjunto C, el conjunto de llegada es el conjunto D y la expresión  x + y = 3 es la regla que asocia los elementos de los dos conjuntos.
Dominio y rango de una relación
El dominio de una relación es el conjunto de preimágenes; es decir, el conjunto formado por los elementos del conjunto de partida que están relacionados. Al conjunto de imágenes, esto es, elementos del conjunto de llegada que están relacionados, se le denomina recorrido o rango.
Ejemplo 3 
Sea A = {1,2, 3, 4}  y B = {4, 5, 6, 7, 8} y R la relación definida de A en B determinada por la regla “y  es el doble de x” o  “y = 2x”, encontrar dominio y rango de la relación.
Solución
El total de pares ordenados que podemos formar, o producto cartesiano es:
A x B =  {(1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (2, 4), (2, 5), (2, 6), (2, 7), (2, 8), (3, 4), (3, 5), (3, 6), (3, 7), (3, 8), (4, 4), (4,...
Leer documento completo

Regístrate para leer el documento completo.

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS