Funciones Exponenciales Y Logaritmicas
FUNCIÓN EXPONENCIAL
● OBJETIVOS:
● Identificar funciones exponenciales
● Obtener la fórmula exponencial asociada a una situación determinada
●Resolver problemas de aplicación usando problemas exponenciales y sus gráficas
MAPA CONCEPTUAL
EJERCICIO EXPLICADO
x
f(x) = 2
x
x y=
23 ⅛
2 ¼
1 ½
0 1
1 2
2 4
3 8
PROBLEMA EXPLICADO
En una investigación científica, una población de moscas crece exponencialmente. Si después de 2 días hay 100 moscas y después de 4 días hay 300 moscas.
1. ¿Cuál es la fórmula de la función que representa el crecimiento de la población de
moscas?
2.¿Cuántas moscas hay después de 5 días?
3. ¿Después de cuanto tiempo la población de moscas será de 1000 individuos?
Solución:
1¿Cuál es la fórmula de la función que representa el crecimiento de la población de
moscas? Como hablamos de un crecimiento exponencial estamos buscando una función de la forma:
f x = y 0 × a x b
Donde x representa el número de días transcurridos. Las condiciones del problema nos permite crear la siguiente tabla:
x
2
4
f(x)
100
300
Los valores de la tabla indican que la población de moscas se triplicó en un periodo de 2 días , lo que nos permite escribir la fórmula así:
f x = y0 × 3 x2
Sabemos que
f
(2)=100. Reemplazando en la fórmula para hallar
y0
:
f 2 = y0 × 3 22 100 = y0 × 3 1 y0 = 1003 Finalmente la fórmula para el crecimiento de las moscas es:
f x = 1003 × 3 x2
2 ¿Cuántas moscas hay después de 5 días?
Usando la fórmula para
x
= 5, la población será:
f 5 = 1003 × 3 52 f 5 ≈ 520 Después de 5 días habrá aproximadamente 520 moscas.
3 ¿Después de cuánto tiempo la población de moscas será de 1000 individuos?
Queremos encontrar el valor de
x
para el cual
f
(
x
) = 1000: ...
Regístrate para leer el documento completo.