funciones trigonometricas
Concepto de función trigonométrica
Una funcióntrigonométrica, también llamada circular, es aquella que se define por la aplicación de una razón trigonométrica a los distintos valores de la variable independiente, que ha de estar expresada en radianes. Existen seis clases de funciones trigonométricas: seno y su inversa, la cosecante; coseno y su inversa, la secante; y tangente y su inversa, la cotangente. Para cada una de ellas pueden también definirsefunciones circulares inversas: arco seno, arco coseno, etcétera.
La función senoSe denomina función seno, y se denota por f (x) 5 sen x, a la aplicación de la razón trigonométrica seno a una variable independiente x expresada en radianes. La función seno es periódica, acotada y continua, y su dominio de definición es el conjunto de todos los números reales.
82486527749500
Gráfica de la funciónseno.
La función cosecante puede calcularse como la inversa de la función seno expresada en radianes.
La función coseno
La función coseno, que se denota por f (x) = cos x, es la que resulta de aplicar la razón trigonométrica coseno a una variable independiente x expresada en radianes. Esta función es periódica, acotada y continua, y existe para todo el conjunto de los números reales.90106526416000
Gráfica de la función tangente.
La función cotangente es la inversa de la tangente, para cualquier ángulo indicado en radianes.
Propiedades de las funciones trigonométricas
Como características importantes y distintivas de las funciones trigonométricas pueden resaltarse las siguientes:
Las funciones seno, coseno y tangente son de naturaleza periódica, de manera que el periodo de lasfunciones seno y coseno es 2p y el de la función tangente es p.
Las funciones seno y coseno están definidas para todo el conjunto de los números reales. Ambas son funciones continuas (no así la función tangente).
Las funciones seno y coseno están acotadas, ya que sus valores están contenidos en el intervalo [-1,1]. La función tangente no está acotada.
Las funciones seno y tangente son simétricasrespecto al origen, ya que sen (-x) = -sen x; tg (-x)=-tg x. En cambio, la función coseno es simétrica respecto al eje Y: cos (-x) = cos x.
Funciones circulares recíprocas
Se llaman funciones circulares recíprocas a las que anulan la acción de las funciones trigonométricas. A cada función trigonométrica le corresponde una función circular recíproca, según la relación siguiente:
La funciónrecíproca del seno es arco seno, simbolizada por f (x) = = arc sen x.
La función recíproca del coseno es arco coseno, expresada por f (x) == arc cos x.
La función recíproca de la tangente es arco tangente, denotada por f (x) == arc tg x.
FUNCIONES INVERSAS
Sabemos que una función es un conjunto de pares. Se nos puede ocurrir la idea de dar la vuelta a los pares y obtener así una nueva función.Hagámoslo con la función:
f = { (1, 2), (2, 4), (3, -1), (4, -2) }
y observemos qué pasa llamando g al conjunto resultante:
g = { (2, 1), (4, 2), (-1, 3), (-2, 4) }
Hemos obtenido una nueva función.
Sin embargo, esto no funciona siempre. Tomemos ahora como f el conjunto:
f = { (1, 2), (2, 4), (3, -1), (4, 2) }
y, entonces, g será:
g = { (2, 1), (4, 2), (-1, 3), (2, 4) }
que no es una función,pues g(2) no está determinado de forma única; es decir, g no cumple la condición de función. Existen dos pares, (2, 1) y (2, 4), que tienen la misma primera coordenada y la segunda coordenada es distinta.
¿Cuál es la diferencia entre estos dos ejemplos? Sencillamente, que en el segundo ejemplo f(1)=f(4)=2 y al darle la vuelta a los pares, g(2) no está determinado de forma única; con lo cual g...
Regístrate para leer el documento completo.