funciones trigonomtricas

Páginas: 5 (1133 palabras) Publicado: 26 de mayo de 2013
Funciones trigonometricas

En matemáticas, las funciones trigonométricas son las funciones establecidas con el fin de extender la definición de las razones trigonométricas a todos los números reales y complejos.
Las funciones trigonométricas son de gran importancia en física, astronomía, cartografía, náutica, telecomunicaciones, la representación de fenómenos periódicos, y otras muchasaplicaciones. En nuestros tiempos de avances tecnológicos es necesario y casi prioritario el uso de cálculos y funciones que a pesar que fueron creadas hace muchotiempo siempre van a ser información y material de vanguardia en el moderno mundo de hoy, es necesario acotar que en el siguiente trabajoabordaremos temas de gran importancia en la matemáticas específicamente en el area de trigonometría endonde estudiaremos sus funciones y algo mas.

Historia 

A través del tiempo una gran cantidad de personajes han dedicado su vida para contribuir con la realización de cálculos que ayuden y nos lleven a encontrar respuestas y resultados exactos para así descubrir el porque de los fenómenos y hechos en la historia humana.
Unos de los puntos dentro de la matemática a resaltar seria las funcionestrigonométricas son valores sin unidades que dependen de la magnitud de un ángulo. Estas funciones fueron creadas a partir de la trigonometría plana y esférica para después ser perfeccionada y lograr lo que hoy llamamos Funciones Trigonometricas, es necesario dejar claro que es importante ya que forma parte de la matemáticas y que es fundamental en el desarrollo de algunas operaciones de cálculospara así obtener los resultados de los objetivos trazados. El estudio de las funciones trigonométricas se remonta a la época de Babilonia, y gran parte de los

fundamentos de trigonometríafueron desarrollados por los matemáticos de la Antigua Grecia, de la India y estudiosos musulmanes.
El primer uso de la función seno (sin(·)) aparece en el Sulba Sutras escrito en India del siglo VIII alVI a. C. Las funciones trigonométricas fueron estudiadas por Hiparco de Nicea (180-125 a. C.), Aryabhata (476-550), Varahamihira, Brahmagupta, al-Khwarizmi, Abu'l-Wafa, Omar Khayyam, Bhaskara II, Nasir al-Din Tusi, Regiomontanus (1464), Ghiyath al-Kashi y Ulugh Beg (Siglo XIV), Madhava (ca. 1400), Rheticus, y el alumno de éste, Valentin Otho. La obra de Leonhard Euler Introductio in analysininfinitorum(1748) fue la que estableció el tratamiento analítico de las funciones trigonométricas en Europa, definiéndolas como series infinitas presentadas en las llamadas "Fórmulas de Euler".
La noción de que debería existir alguna correspondencia estándar entre la longitud de los lados de un triángulo siguió a la idea de que triángulos similares mantienen la misma proporción entre sus lados. Esto es,que para cualquier triángulo semejante, la relación entre la hipotenusa y otro de sus lados es constante. Si la hipotenusa es el doble de larga, así serán los catetos. Justamente estas proporciones son las que expresan las funciones trigonométricas.

Teorema de pitágoras

El teorema de Pitágoras es un teorema que se aplica exclusivamente a triángulos rectángulos, y nos sirve para obtener un ladoo la hipotenusa de un triángulo, si es que se conocen los otros dos. El teorema se enuncia así:
c2 = a2+b2 
donde a y b son los lados del triángulo rectángulo, y c siempre es la hipotenusa (el lado más grande del triángulo).
El cuadrito rojo en la esquina del triángulo indica solamente que ese ángulo es recto (o sea, mide exactamente 90°)
Para usar el teorema de Pitágoras, sólo hay quesustituir los datos que te dan, por ejemplo, en el triángulo rectángulo:
Te dan a (que es 3) y b (que es 4), así que sustituimos en la fórmula, y eso nos dá:
c2 = (3)2 + (4)2
elevando al cuadrado, eso da:
c2 = 9 +16 = 25
para obtener el valor de c, sacamos raíz cuadrada:
  o sea que c = 5.
Cuando lo que te falta es uno de los catetos (uno de los lados, pues) , hay que despejar de la fórmula la...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • La funcion de la funcion
  • La Función De La Función
  • Funcion
  • Funciones
  • Funciones
  • Funciones
  • Funciones
  • Funciones

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS