fundamentos

Páginas: 6 (1409 palabras) Publicado: 15 de enero de 2015
Circuitos aritméticos y lógicos
DEFINICIÓN

Dentro de la variada gama de circuitos digitales, tenemos los denominados circuitos aritméticos. Estos tienen como objetivo realizar operaciones aritméticas en formato binario o BCD, punto fijo o punto flotante. Dependiendo de la aplicación se utilizarán unos u otros.

Son dispositivos MSI que pueden realizar operaciones aritméticas (suma,resta, multiplicación y división) con números binarios. De todos los dispositivos, nos centraremos en los comparadores de magnitud, detectores y generadores de paridad, sumadores y ALU’ s; (El diseño MSI surgió gracias a los avances en la tecnología de integración. Estos avances abarataron los costes de producción, y permitieron el desarrollo de circuitos más generales.









OPERACIONESARITMETICAS BINARIAS

Suma de números binarios
La tabla de sumar para números binarios es la siguiente:
+
0
1
0
0
1
1
1
10
Las posibles combinaciones al sumar dos bits son:
0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10

Note que al sumar 1 + 1 es 102, es decir, llevamos 1 a la siguiente posición de la izquierda (acarreo). Esto es equivalente, en el sistema decimal a sumar 9 + 1, queda 10: cero en la posición que estamos sumando y un 1 de acarreo a la siguiente posición.




Ejemplo
1
10011000
+ 00010101
———————————
10101101
Se puede convertir la operación binaria en una operación decimal, resolver la decimal, y después transformar el resultado en un (número) binario. Operamos como en el sistema decimal: comenzamos a sumar desde la derecha, ennuestro ejemplo, 1 + 1 = 10, entonces escribimos 0 en la fila del resultado y llevamos 1 (este "1" se llama acarreo o arrastre). A continuación se suma el acarreo a la siguiente columna: 1 + 0 + 0 = 1, y seguimos hasta terminar todas la columnas (exactamente como en decimal).
Resta de números binarios
El algoritmo de la resta en sistema binario es el mismo que en el sistema decimal. Pero convienerepasar la operación de restar en decimal para comprender la operación binaria, que es más sencilla. Los términos que intervienen en la resta se llaman minuendo, sustraendo y diferencia.
Las restas básicas 0 - 0, 1 - 0 y 1 - 1 son evidentes:
0 - 0 = 0
1 - 0 = 1
1 - 1 = 0
0 - 1 = 1 (se transforma en 10 - 1 = 1) (en sistema decimal equivale a 2 - 1 = 1)
La resta 0 - 1 se resuelve, igual que en elsistema decimal, tomando una unidad prestada de la posición siguiente: 0 - 1 = 1 y me llevo 1, lo que equivale a decir en el sistema decimal, 2 - 1 = 1.
Ejemplos
10001 11011001
-01010 -10101011
—————— —————————
00111 00101110





En sistema decimal sería: 17 - 10= 7 y 217 - 171 = 46.
Para simplificar las restas y reducir la posibilidad de cometer errores hay varios métodos:
Dividir los números largos en grupos. En el siguiente ejemplo, vemos cómo se divide una resta larga en tres restas cortas:
100110011101 1001 1001 1101
-010101110010 -0101 -0111 -0010
————————————— = ————— ——————————
010000101011 0100 0010 1011

Utilizando el complemento a dos (C2). La resta de dos números binarios puede obtenerse sumando al minuendo el «complemento a dos» del sustraendo.
Ejemplo
La siguiente resta, 91 - 46 = 45, en binario es:
1011011 1011011
-0101110 el C2 de 0101110 es 1010010 +1010010———————— ————————
0101101 10101101
En el resultado nos sobra un bit, que se desborda por la izquierda. Pero, como el número resultante no puede ser más largo que el minuendo, el bit sobrante se desprecia.
Un último ejemplo: vamos a restar 219 - 23 = 196, directamente y utilizando el complemento a...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Fundamentos
  • Fundamentos
  • Fundamentos
  • Fundamentos
  • Fundamento
  • Fundamentos
  • fundamento
  • fundamentos

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS