futbol

Páginas: 2 (328 palabras) Publicado: 23 de octubre de 2014
Carlos Maya Dorantes
ICM de la UAEH
Veinticinco de Agosto de 2011
Introducción. En este ensayo deseo exponer la importancia que poseen los números reales, ya que ellos constituyen la basedelcálculo diferencial e integral. De manera muy breve se darán a conocer algunas de sus propiedades, así mismo conoceremos una muy importante herramienta del cálculo, la función, nos apoyaremos dediversosautores para poder enriquecer este escrito.
En las matemáticas tenemos diversos conjuntos de números, los naturales o los racionales, por mencionar algunos, pero conforme ha ido evolucionando,lanecesidad de representar cantidades de maneras más exactas también ha ido creciendo “Los número reales surgen del deseo de representar «cantidades» que no tienen representación adecuada dentro de Q.Comoveremos, hay ecuaciones que no admiten soluciones en Q así como hay objetos geométricos simples que no se pueden medir exactamente usando sólo fracciones.”[1].

Con esto podemos darnos cuenta queenel conjunto de los números reales podemos encontrar a todos los demás conjuntos de números.

Una vez que hemos analizado definido de manera general a los números reales, podemos empezar a versuspropiedades con la ayuda de Gladys Bobadilla A. y Rafael Labarca B. ellos las consideran de la siguiente manera:

1-Reflexividad: a = a
2-Simetría: si a = b, entonces b = a
3-Transitividad: si a=b y b = c, entonces a = c.
4-Ley asociativa para la suma: a + (b + c) = (a + b) + c.
5-Existencia de un elemento identidad para la suma: a + 0 = 0 + a = a
6-Existencia de inversos para la suma:a+ (-a) = (-a) + a = 0:
7-Ley conmutativa para la suma: a + b = b + a:
8-Ley asociativa para la multiplicación: a * (b * c) = (a * b) * c:
9-Existencia de un elemento identidad paralamultiplicación: a*1 = 1*a = a; 1 ≠ 0:
10-Existencia de inversos para la multiplicación: a * a^-1 = a^-1 * a = 1; para a ≠ 0:
11-Ley conmutativa para la multiplicación: a * b = b * a
12-Ley distributiva:...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Futbol
  • El Futbol
  • Futbol
  • Futbol
  • Futbol
  • Futbol
  • Futbol
  • Futbol

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS