geogebra
Pág. 17
1) y=log2x y=log3x y=log3/2x y=log 1/2x y=log1/3x
a) Características comunes:
Dominio: (0 +∞)
Imagen: R
F (0): -
Raíz: 1
Asíntota: eje y
b)Diferencias :
¿Las funciones son crecientes o decrecientes? ¿De qué depende? Construye otro grafico para comprobar tu hipótesis.
Son 3 crecientes y 2 decrecientes. Esto depende según si la base dellogaritmo es 1 o más son crecientes si son menores son decrecientes.
c) ¿Existe alguna simetría entre las funciones dadas? ¿De qué crees que depende?
Si existen, depende cuando una funcióntiene una base y otra tiene la misma base opuesta, estas funciones son si simétricas. INVERSAS
2)
¿Que observas?
Se observa una simetria con respeto a la recta y= x
¿Por qué se produce esto?Porque las funciones log son inversas a la exponencial de igual base
3)
¿Qué observas ?
Se observa una simetria entre la funcion de log 1/2 X y la funcion y= (1/2)^x , con respecto a larecta y= x
¿Por qué se produce esto ?
se debe a que las funciones log son inversas a la exponencial de igual base
4)
¿Existe alguna simetría entre las funciones dadas? ¿De qué crees quedepende? Verifica tu conclusión proponiendo otro grafico.
Si, existen. En el eje Y se da una simetría entre la función de color rosa y la función de color celeste. Y en el eje X se da una simetría entrela función de color bordo y la de color rosa.
Depende de que la rosa con la bordo son simétricas por el logaritmo, uno es positivo y el otro negativo. En la bordo y rosa son simétricas debido a suargumento, es inverso. OPUESTOS
5) a)
b)
c)d)
6) a)b)
c)
7)
La gráfica verde corresponde a la función h(x)=log1/2x porque es la única función decreciente de las cuatro, y tiene basemenor a 1.
Me doy cuenta de que y=log5x es la gráfica azul porque pasa por el punto (5;1).
Me doy cuenta de que y=log2x es la gráfica roja porque pasa por el punto (2;1)
Se ve que la gráfica negra...
Regístrate para leer el documento completo.