Geometría no euclidiana
Geometría no euclidiana
Historia
El primer ejemplo de geometría no euclidiana fue la hiperbólica, teorizada inicialmente por Immanuel Kant[cita requerida], formalizada posterior eindependientemente por varios autores a principios del siglo XIX tales como Carl Friedrich Gauss, Nikolái Lobachevski, János Bolyai y Ferdinand Schweickard.
Los desarrollos de geometrías no euclídeas segestaron en sus comienzos con el objetivo de construir modelos explícitos en los que no se cumpliera el quinto postulado de Euclides.
La geometría Euclideana había sido desarrollada por los griegos yexpuesta por Euclides en la obra Los elementos. En su primera obra publicada, "Pensamientos sobre la verdadera estimación de las fuerzas vivas" (Gedanken von der wahren Schätzung der lebendigen Kräfteund Beurteilung der Beweise derer sich Herr von Leibniz und anderer Mechaniker in dieser Streitsache bedient haben) (1746), Immanuel Kant considera espacios de más de tres dimensiones y afirma:
Unaciencia de todas estas posibles clases de espacio sería sin duda la empresa más elevada que un entendimiento finito podría acometer en el campo de la Geometría... Si es posible que existan extensionescon otras dimensiones, también es muy probable que Dios las haya traído a la existencia, porque sus obras tienen toda la magnitud y variedad de que son capaces.
Esas posibles geometrías que Kantentrevé son las que hoy se llaman geometrías euclidianas de dimensión mayor que 3.
Por otra parte, ya desde la antigüedad se consideró que el quinto postulado del libro de Euclides no era tan evidente comolos otros cuatro pues, al afirmar que ciertas rectas (las paralelas) no se cortarán al prolongarlas indefinidamente, habla de una construcción mental un tanto abstracta. Por eso durante muchos siglosse intentó sin éxito demostrarlo a partir de los otros cuatro. A principios del siglo XIX, se intentó demostrarlo por reducción al absurdo, suponiendo que es falso y tratando de obtener una...
Regístrate para leer el documento completo.