Geometria analitica

Páginas: 9 (2127 palabras) Publicado: 19 de septiembre de 2010
Geometria analitica

Se conoce como geometría analítica al estudio de ciertos objetos geométricos mediante técnicas básicas del análisis matemático y del álgebra en un determinado sistema de coordenadas. Se podría decir que es el desarrollo histórico que comienza con la geometría cartesiana y concluye con la aparición de la geometría diferencial con Carl Friedrich Gauss y más tarde con eldesarrollo de la geometría algebraica.
Los dos problemas fundamentales de la geometría analítica son:
1. Dado el lugar geométrico en un sistema de coordenadeas, obtener su ecuación.
2. Dada la ecuación en un sistema de coordenadas, determinar la gráfica o lugar geométrico de los puntos que verifican # dicha ecuación.
Lo novedoso de la geometría analítica es que permite representar figurasgeométricas mediante fórmulas del tipo f(x,y) = 0, donde f representa una función u otro tipo de expresión matemática. En particular, las rectas pueden expresarse como ecuaciones polinómicas de grado 1 (por ejemplo, 2x + 6y = 0) y las circunferencias y el resto de cónicas como ecuaciones polinómicas de grado 2 (la circunferencia x2 + y2 = 4, la hipérbola xy = 1)

Historia de la geometría analíticaExiste una cierta controversia sobre la verdadera paternidad de este método. Lo único cierto es que se publica por primera vez como "Geometría analítica", apéndice al Discurso del método, de Descartes, si bien se sabe que Pierre de Fermat conocía y utilizaba el método antes de su publicación por Descartes. Aunque Omar Khayyam ya en el siglo XI utilizara un método muy parecido para determinarciertas intersecciones entre curvas, es imposible que alguno de los citados matemáticos franceses tuvieran acceso a su obra.
El nombre de geometría analítica corrió parejo al de geometría cartesiana, y ambos son indistinguibles. Hoy en día, paradójicamente, se prefiere denominar geometría cartesiana al apéndice del Discurso del método, mientras que se entiende que geometría analítica comprende nosólo a la geometría cartesiana (en el sentido que acabamos de citar, es decir, al texto apéndice del Discurso del método), sino también todo el desarrollo posterior de la geometría que se base en la construcción de ejes coordenados y la descripción de las figuras mediante funciones algebraicas o no hasta la aparición de la geometría diferencial de Gauss (decimos "paradójicamente" porque se usaprecisamente el término "geometría cartesiana" para aquello que el propio Descartes bautizó como "geometría analítica"). El problema es que durante ese periodo no existe una diferencia clara entre geometría analítica y análisis matemático esta falta de diferencia se debe precisamente a la identificación hecha en la época entre los conceptos de función y curva, por lo que resulta a veces muy difícilintentar determinar si el estudio que se está realizando corresponde a una u otra rama.
La geometría diferencial de curvas sí que permite un estudio mediante un sistema de coordenadas, ya sea en el plano o en el espacio tridimensional. Pero en el estudio de las superficies, en general, aparecen serios obstáculos. Gauss salva dichos obstáculos creando la geometría diferencial, y marcando con ello elfin de la geometría analítica como disciplina. Es con el desarrollo de la geometría algebraica cuando se puede certificar totalmente la superación de la geometría analítica.
Es de puntualizar que la denominación de analítica dada a esta forma de estudiar la geometría provocó que la anterior manera de estudiarla (es decir, la manera axiomático-deductiva, sin la intervención de coordenadas) seterminara denominando, por oposición, geometría sintética, debido a la dualidad análisis-síntesis.
Actualmente el término geometría analítica sólo es usado en enseñanzas medias o en carreras técnicas en las que no se realiza un estudio profundo de la geometría.

Construcciones fundamentales

En un sistema de coordenadas cartesianas, un punto del plano queda determinado por dos números,...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • geometria analitica
  • geometria analitica
  • Geometria analitica
  • geometria analitica
  • La geometría analítica
  • geometria analitica
  • geometria analitica
  • Geometria analitica

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS