geometria

Páginas: 8 (1915 palabras) Publicado: 6 de julio de 2013
En un sistema de coordenadas cartesianas, un punto del plano queda determinado por dos números, llamados abscisa y ordenada del punto. Mediante ese procedimiento a todo punto del plano corresponden siempre dos números reales ordenados (abscisa y ordenada), y recíprocamente, a un par ordenado de números corresponde un único punto del plano. Consecuentemente el sistema cartesiano establece unacorrespondencia biunívoca entre un concepto geométrico como es el de los puntos del plano y un concepto algebraico como son los pares ordenados de números. Esta correspondencia constituye el fundamento de la geometría analítica.
Con la geometría analítica se puede determinar figuras geométricas planas por medio de ecuaciones e inecuaciones con dos incógnitas. Éste es un método alternativo deresolución de problemas, o cuando menos nos proporciona un nuevo punto de vista con el cual poder atacar el problema.
Localización de un punto en el plano cartesiano[editar]
Como distancia a los ejes[editar]

En un plano traza dos rectas orientadas perpendiculares entre sí (ejes) —que por convenio se trazan de manera que una de ellas sea horizontal y la otra vertical—, y cada punto del plano quedaunívocamente determinado por las distancias de dicho punto a cada uno de los ejes, siempre y cuando se dé también un criterio para determinar sobre qué semiplano determinado por cada una de las rectas hay que tomar esa distancia, criterio que viene dado por un signo. Ese par de números, las coordenadas, quedará representado por un par ordenado , siendo la distancia a uno de los ejes (por convenio serála distancia al eje horizontal) e la distancia al otro eje (al vertical).
En la coordenada , el signo positivo (que suele omitirse) significa que la distancia se toma hacia la derecha sobre el eje horizontal (eje de las abscisas), y el signo negativo (nunca se omite) indica que la distancia se toma hacia la izquierda. Para la coordenada , el signo positivo (también se omite) indica que ladistancia se toma hacia arriba sobre el eje vertical (eje de ordenadas), tomándose hacia abajo si el signo es negativo (en ningún caso se omiten los signos negativos).
A la coordenada se la suele denominar abscisa del punto, mientras que a la se la denomina ordenada del punto.
Los puntos del eje de abscisas tienen por lo tanto ordenada igual a , así que serán de la forma , mientras que los del ejede ordenadas tendrán abscisa igual a , por lo que serán de la forma .
El punto donde ambos ejes se cruzan tendrá por lo tanto distancia a cada uno de los ejes, luego su abscisa será y su ordenada también será . A este punto —el — se le denomina origen de coordenadas.
Como proyección sobre los ejes[editar]
Se consideran dos rectas orientadas, (ejes) , perpendiculares entre sí, x e y, con unorigen común, el punto O de intersección de ambas rectas.
Teniendo un punto P, al cual se desea determinar las coordenadas, se procede de la siguiente forma:
Por el punto P se trazan rectas perpendiculares a los ejes, éstas determinan en la intersección con los mismos dos puntos, P' (el punto ubicado sobre el eje x) y el punto P'' ( el punto ubicado sobre el eje y).
Dichos puntos son lasproyecciones ortogonales sobre los ejes x e y del punto P.
A los Puntos P' y P'' le corresponden por número la distancia desde ellos al origen, teniendo en cuenta que si el punto P' se encuentra a la izquierda de O, dicho número será negativo, y si el punto P'' se encuentra hacia abajo del punto O, dicho número será negativo.
Los números relacionados con P' y P'', en ese orden son los valores de lascoordenadas del punto P.
Ejemplo 1: P' se encuentra a la derecha de O una distancia igual a 2 unidades. P'' se encuentra hacia arriba de O, una distancia igual a 3 unidades. Por lo que las coordenadas de P son (2 , 3).
Ejemplo 2: P' se encuentra a la derecha de O una distancia igual a 4 unidades. P'' se encuentra hacia abajo de O, una distancia igual a 5 unidades. Por lo que las coordenadas de...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Geometria
  • Geometria
  • Geometria
  • Geometria
  • la geometria
  • Geometria
  • geometria
  • Geometria

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS