Geor
Los números naturales son aquellos que permiten contar los elementos de un conjunto. Se trata del primer conjunto de números que fue utilizado por los seres humanos para contar objetos. Uno (1), dos (2), cinco (5) y nueve (9), por ejemplo, son números naturales.
Existe una controversia respecto a considerar al cero (0) como un número natural. Por lo general, la Teoría deConjuntos incluye al cero dentro de este grupo, mientras que la Teoría de Números prefiere excluirlo.
Podría decirse que los números naturales tienen dos grandes usos: se utilizan para especificar el tamaño de un conjunto finito y para describir qué posición ocupa un elemento dentro de una secuencia ordenada.
Reconocer el conjunto números naturales
Existe una clase de números con los que estamosmuy familiarizados, estos son los bien llamados números naturales, diariamente hacemos usos de tales numerales, ya que son los que utilizamos para contar (números cardinales), es decir: 1, 2, 3, 4, 5…y así seguimos, sumando 1 al anterior para obtener el siguiente, este proceso se repite hasta el infinito, es decir que no existe un último número natural. Es preciso señalar que no todos losmatemáticos reconocen al número cero como un natural, sin embargo, dependiendo de la situación, hay veces que es mejor reconocerlo como tal.
Los números naturales pertenecen a un conjunto mayor de números, los números enteros, estos últimos abarcan al cero y a los números negativos. Como en este escrito no haremos uso alguno de los numerales negativos ni tampoco del mencionado cero (aunque ya se dijo que enocasiones es preferible considerarle un natural), hemos preferido usar el conjunto de los números naturales en vez del conjunto de los enteros.
Signos empleados en los Números Naturales
< > Es menor a, es mayor a.
= Igual a.
+ Mas.
- Menos.
x Por.
/ Entre, dividido por.
∑ Suma sobre.. desde.. hasta.. de.
∏ Producto sobre.. desde.. hasta.. de.
√ La raíz cuadrada de.
∞ Infinito.
πPi.
Signos de agrupación
Paréntesis ( ).
Corchetes [ ].
Llaves { }.
Orden en N
La definición formal de un conjunto ordenado como una pareja formada por un conjunto y un orden garantiza que la topología del orden sea única en cada conjunto ordenado. Sin embargo, en la práctica la distinción entre un conjunto con un orden definido en él y la pareja de conjunto y orden se obvia casi siempre.Para evitar entonces confusión cuando se usa más de un orden sobre un conjunto se habla de la topología del orden inducida por un orden particular. Por ejemplo, si N es el conjunto de los naturales, y < y > son las relaciones usuales de menor y mayor, se puede hablar de la topología del orden en N inducida por < y aquella inducida por > (en este caso resultan ser la misma, pero en general no seráasí).
Operaciones Básicas en N y Propiedades Básicas
Suma
La operación suma consiste en obtener el número total de elementos a partir dos o más cantidades.
a + b = c
Los términos de la suma, a y b, se llaman sumandos y el resultado, c, suma.
Propiedades de la suma
1. Asociativa:
El modo de agrupar los sumandos no varía el resultado.
(a + b) + c = a + (b + c)
2. Conmutativa:
El orden delos sumandos no varía la suma.
a + b = b + a
3. Elemento neutro:
El 0 es el elemento neutro de la suma porque todo número sumado con él da el mismo número.
a + 0 = a
4. Elemento opuesto
Dos números son opuestos si al sumarlos obtenemos como resultado el cero.
a − a = 0
El opuesto del opuesto de un número es igual al mismo número.
La suma de números naturales no cumple esta propiedad.Resta
La resta o sustracción es la operación inversa a la suma.
a -b = c
Los términos que intervienen en una resta se llaman: a, minuendo y b, sustraendo. Al resultado, c, lo llamamos diferencia.
Propiedades de la resta
No es Conmutativa:
a − b ≠ b − a
Multiplicación
Multiplicar dos números consiste en sumar uno de los factores consigo mismo tantas veces como indica el otro factor.
a · b...
Regístrate para leer el documento completo.