goldbach

Páginas: 8 (1841 palabras) Publicado: 30 de octubre de 2013
Francis en ¡Eureka!: Demostrada la conjetura débil de Goldbach

Ya está disponible el audio de mi sección ¡Eureka! en el programa La Rosa de los Vientos de Onda Cero. Sigue este enlace para disfrutarlo. Como siempre una transcripción libre. Esta semana las matemáticas han sido noticia porque se ha resuelto un problema propuesto hace más de 270 años. Un problema sencillo de enunciar, peromuy difícil de demostrar. ¿Qué problema se ha resuelto? En 1742, el matemático Christian Goldbach le preguntó por carta a su amigo y famoso matemático Leonhard Euler si podía demostrar dos resultados muy sencillos sobre números. Por un lado, lo que hoy en día llamamos la conjetura de Goldbach, o conjetura fuerte de Goldbach, que dice que todo número par mayor que 2 se puede escribir como suma dedos números primos. Por ejemplo, 6 = 3 + 3, 8 = 3 + 5, 10 = 3 + 7, 16 = 3 + 13, etc. Y por otro lado, una variante de este problema que hoy en día llamamos la conjetura débil de Goldbach, que afirma que  todo todo número impar mayor que 5 puede escribir como suma de tres números primos. Por ejemplo, 7 = 2 + 2 + 3, 9 = 3 + 3 + 3, 11 = 3 + 3 + 5, 35 = 19 + 13 + 3, o 77 = 53 + 13 + 11, etc. Elmatemático peruano Harald Andrés Helfgott ha publicado un trabajo en el que afirma haber demostrado la conjetura débil de Goldbach (o conjetura ternaria de Goldbach). Por supuesto, en estas noticias de matemáticas tenemos que ser cautos. La demostración ocupa 133 páginas y se basa en un trabajo previo de más de 100 páginas. La confirmación “oficial” todavía podría tardar un tiempo, pero varios expertos,como el famoso Terence Tao, que recibió la medalla Fields en el año 2006 en Madrid, afirman que la nueva demostración tiene muy buena pinta y casi seguro que es correcta. Recomiendo leer a “(Parece ser que) Demostrada la conjetura débil de Goldbach,” Gaussianos.com, 14 mayo 2013. El artículo técnico para los matemáticos que deseen profundizar es H. A. Helfgott, “Major arcs for Goldbach’stheorem,” arXiv:1305.2897, 13 May 2013; creo que es recomendable leer antes H. A. Helfgott, “Minor arcs for Goldbach’s problem,” arXiv:1205.5252, 23 May 2013.
Este resultado matemático es muy fácil de enunciar. ¿Por qué ha costado 271 años demostrar esta conjetura? Muchos problemas matemáticos quedan sin resolver durante siglos. Incluso los griegos se plantearon preguntas que no fueron resueltashasta el siglo XIX. Esto pasa con muchos resultados en la rama de las matemáticas llamada teoría de números. Son tan fáciles de enunciar que hasta un niño puede entenderlos, pero son extremadamente duros de demostrar. Los números primos son los números mayores que la unidad que no se pueden dividir por ningún otro número, salvo por ellos mismos y por el uno. Por ejemplo, el 2, 3, 5, 7, 11, 13, 17,19, 23, etc. Lo importante de los números primos es que todos los demás números, llamados compuestos, se pueden descomponer en un producto de números primos. Por ejemplo, 12 es 3 por 2 por 2, o 33 es 3 por 11. Por ello, el estudio de los números primos es muy importante en la teoría de números, la rama de las matemáticas que comprende el estudio de los números enteros. Estudiar las propiedades delos números primos en multiplicaciones y divisiones es fácil, sin embargo, las propiedades de las sumas y restas de números primos son muy difíciles de estudiar. Las conjeturas de Goldbach nos hablan de la suma de números primos y por eso están entre los problemas más difíciles de la matemática actual. La demostración de la conjetura débil de Goldbach ha costado 271 años, pero para la conjeturafuerte no ha habido ningún progreso en el último siglo y es posible que no sea demostrada en el siglo XXI. ¿Nos podrías contar de forma sencilla cómo se ha demostrado este resultado? A finales del siglo XIX se desarrolló una rama de las matemáticas llamada teoría analítica de los números, que utiliza herramientas de análisis matemático para resolver problemas de teoría de números, en apariencia...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Conjetura de goldbach
  • conjetura de Goldbach
  • El tío Petros y la conjetura de Goldbach
  • Tío Petros y La Conjetura De Goldbach
  • El tio petrus y la conjetura de goldbach
  • Tio Petrus Y La Congetura De Goldbach
  • Tio petros y la conjetura de goldbach
  • La conjetura de Goldbach

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS