Guia Repaso De Logaritmos

Páginas: 5 (1229 palabras) Publicado: 22 de julio de 2015
COLEGIO INGLES SAINT JOHN
DEPTO DE MATEMÁTICA Y FISICA
PEDRO GODOY G

GUIA DE REPASO DE LOGARITMOS
2° MEDIO
I.

Calcular el valor de los siguientes logaritmos

1 ) log 2 8 =
2 ) log 3 9 =
3 ) log 4 2 =

R: 3
R: 2
R : 0,5

4 ) log 27 3 =

R:

5 ) log 5 0,2 =
6 ) log 2 0,25 =
7 ) log 0,5 16 =
8 ) log 0,1 100 =
9 ) log 3 27 + log 3 1 =
10 ) log 5 25  log 5 5 =

R:
R:
R:
R:

II.

11 ) log 4 64 + log8 64 =
12 ) log 0,1  log 0,01 =
13 ) log 5 + log 20 =
14 ) log 2  log 0,2 =

1
3
1
2
4
2
R: 3
R: 1

log 32
=
log 2
log 3
16 )
=
log 81
15 )

R: 5
R: 1
R: 2
R: 1
R: 5
R : 0,25

17 ) log 2 3  log 3 4 =

Determina el valor de x en:

1 ) log 3 81 = x
2 ) log 5 0,2 = x
3 ) log 4 64 =
4 ) log 2 16 =

2x – 1
3
3
x
2

R: 4
R: 1
R: 5
R: 2

1
8

5 ) log 2 x =  3

R:

6 ) log 7 x = 3
7 ) log 6 [ 4( x  1 ) ] = 2
8 ) log 8 [ 2 ( x 3 + 5 ) ] = 2

R : 343
R : 10
R: 3

9 ) log x 125 = 3

R: 5

1
5

10 ) log x 25 =  2

R:

11 ) log 2 x + 3 81 = 2

R: 3

12 ) x + 2 = 10 log 5
13 ) x = 10 4 log 2

R: 3
R : 16

14 ) x =
15 ) x =

log 8
log 2
log 625
log 125

R: 3
R:

4
3

III.

Si log 2 = 0,301 , log 3 = 0,477 y

1 ) log 8 =
2 ) log 9 =
3 ) log 5 =
4 ) log 54 =
5 ) log 75 =
6 ) log 0,25 =

R:R:
R:
R:
R:
R:

 1 
 =
 6 

7 ) log 

IV.

0,903
0,954
0,699
1,732
1,875
 0,602

R :  0,778

log 7 = 0,845 , entonces:

 1
 98


 =

 1 
 =
9 ) log 
 36 
 2 
10 ) log 
 =
 3 
8 ) log 

11 ) log 0,3 =
12 ) log 1,25 =

Calcula el valor de cada una de las siguientes expresiones

1) log 8 512 + log 10 10000 – log 2 32
2) 2 log 5 25 – 3 log 7 49 + 4 log 10 10000
4
125
32
log 2
3) log 2  log 5
9
216
1024
3
6
4
4) 7 log 2
3

5) 4 log 5
7

27
3125
16
 4 log 2
 2 log 3
8
32
81
5
2
25
8
216
 2 log 2
 5 log 6
49
125
343
5
7

6) 2 log 1 32  7 log 1 125  6 log 1 243
4

V.

5

3

Reduce cada una de las siguientes expresiones a un solo logaritmo

1) 2 log b 3 + 3 log b 2
1
log b a – 5 log b c
2
3
3
2
2
3) log b a - log b c - log b d + log b e
4
4
3
3
3
4) log p a + 2log p b – 3 log p c
5
2
3
5) log p a + log p b – 1
3
5

2) 2)

6) log m a – 2 log m b +

3
1
log m c - log m d
4
3

R :  1,991
R :  1,556
R :  0,176
R :  0,523
R : 0,097

VI.
a)

Sabiendo el log 2 = 0,301 y el log 3 = 0,477, calcular:

log 30

b) log 5
c) log 0,27
d) log 0,0128
Calcular:

VII.

a)8log 7 
c)5log
=

49

7

e)25 log
g )3log

3

25


5

2



log 1 9



b)3log

7

d)3



3281

f)4log

16

21

h) 10

1
2

25





log 0,375 10



Evalúate, como estas en logaritmos
1)

log 3 27 = ?

a)

9

2)

log

a)

3

3)

log 5 625 4  ?

a)

4

4)

log 1 8  log 0,01  log 2

b) -9
2

c) 3

d) -3 e) 24

16  ?

b) 8

b) 16

c) 16

d) 4 e) n.a.

c) 8 d) 6 e) 12

2

a)
5)

4 b) 8 c) 6

1

8

d) -2 e) -8

log 100  log 1 27  log 4 2 
3

a)-5/4 b) ¾

c) -3/4

d) 6/7 e) 5/46) Si log 4 N  3 , ¿Cuánto resulta log 4
a)

-8 b) 7 c) -12 d) 12

3

N

N3

e) 10

7) El valor de x en log 7 (3x  20)  2 es:
a)
8)

23 b) 49 c) 69 d) 34 e) n.a.

log 5 125 
a) 2 b) 3 c) 4 d) 5

e) 25

9) Si a , b y l son números reales positivos, con al menos uno de ellos distinto de uno, entonces la
ecuación log b a  l es equivalente a:
d)

10)

a b  l b) a l  b c) b l  a

log1021.000.000 
a) 2

11)

b) 3 c) 4

log 2
3

d) 5 e) 6

81

16

a) -4
12)

b a  l e) l b  a

d)

b) -3

c) -2

d) 2

e) 4

log 0,01 0,001 
a)

-2

b) -1,5

c)-1

d) -0,5

e) 1,5

13) ¿Cuál es el logaritmo de 3 con respecto a la base
a)
14)

1
3

b)

1
2

2
3

c)

3
4

d)

e)

3 3

3
2

1

log 3 3 
3 
9

a)

-2 b) -1

c) 0

d) 1

e) 2

15) De las siguientes afirmaciones, es (son) verdadera(s):I)

log 1 27  3

II)

log 49 7 

3

a)

Solo II

16) El valor de

a)
17)

3.125

b) Solo III y IV

1
2

III)

log 10 100  2

c) Solo I y IV

IV)

log 16 2 

1
4

d) Solo II, III y IV e) Todas

 125  625 
log 5 
 es igual a:
 25 
b) 725

c) 7

d) 6

e) 5

log 9  log 8

2 log 27
a)

4
3

4
3

c) Log2

b)

1
log 3  3
2

b) log

d) 2 log

2
3

e) Log 3

18) log 3  log 3 
a)



log 3...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Repaso Logaritmos
  • Guia de logaritmos
  • Guia de logaritmos
  • Guia De Logaritmo
  • GUIA LOGARITMOS
  • guia logaritmos
  • Breve repaso de logaritmos
  • Repaso De Funciones Exponenciales Y Logarítmicas

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS