Historia de la geometr a y sus t cnicas de representaci n
ANTES DE GRECIA
Las primeras civilizaciones mediterráneas adquieren poco a poco ciertos conocimientos geométricos de carácter muy práctico. Estos son esencialmente algunas fórmulas -o mejor dicho algoritmos expresados en forma de ""receta""- para calcular áreas y longitudes. La finalidad era práctica, pues se pretendía con ello calcularla producción proporcional de las parcelas de tierra para determinar los impuestos, o reconstruir las parcelas de tierra después de las inundaciones. Siempre se ha dicho que los egipcios tenían una alta formación matemática, y se ha llegado a insinuar que tuvieran un acervo de conocimientos secretos o que se hubieran perdido con el paso de los tiempos. Estas hipótesis nunca han sido confirmadas, ylos documentos existentes tienden a echarlas por tierra. La Historia nos hace pensar que el conocimiento que esta civilización -así como los de las culturas mesopotámicas- tuviera sobre Geometría pasó íntegramente a la cultura griega a través de Tales, los pitagóricos, y esencialmente de Euclides.
GEOMETRIA GRIEGA
ANTES DE EUCLIDES
La Geometría Griega fue la primera en ser formal. Parte de losconocimientos concretos y prácticos de las civilizaciones egipcia y mesopotámicas, y da un paso de abstracción al considerar los objetos como entes ideales -un cuadrado cualquiera, en lugar de una pared cuadrada concreta, un círculo en lugar del ojo de un pozo...- que pueden ser manipulados mentalmente, con la sola ayuda de la regla y el compás. Aparece por primera vez la demostración comojustificación de la veracidad de un conocimiento, aunque en un primer momento fueran más justificaciones intuitivas que verdaderas demostraciones formales.
La figura de Pitágoras y de la secta por él creada (los pitagóricos) tiene un papel central, pues eleva a la categoría de elemento primigenio el concepto de número (filosofía que de forma más explícita o más implícita, siempre ha estado dentro de laMatemática y de la Física), arrastrando a la Geometría al centro de su doctrina -en este momento inicial de la historia de la Matemática aún no hay una distinción clara entre Geometría y Aritmética-, y asienta definitivamente el concepto de demostración (éste ya sí coincide con el concepto de demostración formal) como única vía de establecimiento de la verdad en Geometría.
Esta actitud permitió (aunfuera de la secta) la medición de la tierra por Eratóstenes, así como la medición de la distancia a la luna, y la invención de la palanca por Arquímedes, varios siglos después.
En el seno de la secta de los pitagóricos surge la primera crisis de la Matemática: la aparición de los inconmensurables, pero esta crisis es de carácter más aritmético que geométrico.
LOS TRES PROBLEMAS DE LA ANTIGÜEDADLa Geometría griega es incapaz de resolver tres famosos problemas que heredarán los matemáticos posteriores. Es importante observar que los tres problemas deben ser resueltos utilizando únicamente la regla y el compás, únicos intrumentos (además del papel y el lápiz, por supuesto) válidos en la Geometría de Euclides. Además de los tres problemas, la disputa de si el V postulado era o no un teorema(de si se podía o no deducir de los otros cuatro) también se considera uno de los problemas clásicos de la Geometría griega. Estos tres problemas son los siguientes
La duplicación en el cubo
Cuenta la leyenda que la peste asolaba la ciudad de Atenas. Una embajada de la ciudad fue al Oráculo de Delfos, consagrado a Apolo, para consultar con la pitonisa qué se debía hacer para erradicar la mortalenfermedad. La pitonisa, tras consultar al Oráculo, dijo que se debía duplicar el altar consagrado a Apolo en la isla de Delos. El altar tenía una peculiaridad: su forma cúbica. Prontamente, los atenienses construyeron un altar cúbico en el que las medidas de los lados eran el doble de las medidas del altar de Delos, pero la peste no cesó. Consultado de nuevo el Oráculo, la pitonisa advirtió a...
Regístrate para leer el documento completo.