Historia de Pi
La notación con la letra griega π proviene de la inicial de las palabras de origen griego "περιφέρεια" (periferia) y "περίμετρον" (perímetro) de un círculo, notación que fue utilizada primero por William Oughtred (1574-1660), y propuesto su uso por el matemático galés William Jones2 (1675-1749), aunque fue el matemático Leonhard Euler, con su obra «Introducción al cálculoinfinitesimal» de 1748, quien la popularizó. Fue conocida anteriormente como constante de Ludolph (en honor al matemático Ludolph van Ceulen) o como constante de Arquímedes (que no se debe confundir con el número de Arquímedes).
Breve historia del Cálculo del valor π
Antiguo Egipto
El valor aproximado de π en las antiguas culturas se remonta a la época del escriba egipcio Ahmes en el año 1800 a. C.,descrito en el papiro Rhind, donde se emplea un valor aproximado de π afirmando que: el área de un círculo es similar a la de un cuadrado, cuyo lado es igual al diámetro del círculo disminuido en 1/9, es decir, igual a 8/9 del diámetro.
Entre los ocho documentos matemáticos hallados de la antigua cultura egipcia, en dos se habla de círculos. Uno es el papiro Rhind y el otro es el papiro de Moscú.Sólo en el primero se habla del valor aproximado del número π. El investigador Otto Neugebauer, en un anexo de su libro The Exact Sciences in Antiquity, describe un método inspirado en los problemas del papiro de Ahmes para averiguar el valor de π, mediante la aproximación del área de un cuadrado de lado 8, a la de un círculo de diámetro 8.
Mesopotamia
Algunos matemáticos mesopotámicos empleaban,en el cálculo de segmentos, valores de π igual a 3, alcanzando en algunos casos valores más aproximados, como el de
Referencias bíblicas
Una de las referencias indirectas más antiguas del valor aproximado de π se puede encontrar en un versículo de la Biblia:
«(23) Hizo fundir asimismo un mar de diez codos de un lado al otro, perfectamente redondo. Tenía cinco codos de altura y a su alrededorun cordón de treinta codos. (26) El grueso del mar era de un palmo menor, y el borde era labrado como el borde de un cáliz o de flor de lis; y cabían en él dos mil batos. »
I Reyes 7:23-26
El codo mide aproximadamente 45 cm y el palmo menor 7,5 cm. Se debe hallar el valor del radio restando el diámetro total con el grosor del artefacto y dividiendo por dos, dando 210 cm. Con estos datos, sepuede hallar el valor de π usado aquí mediante la fórmula C=2πr : C/2*r=π. Se reemplazan los números: 1350/2*210 y se da que ~3,2143. Un valor aproximado a π.
Una cita similar se puede encontrar en II Crónicas 4:2. En él aparece en una lista de requerimientos para la construcción del Gran Templo de Salomón, construido sobre el 950 a. C..
Antigüedad clásica
El matemático griego Arquímedes (sigloIII a. C.) fue capaz de determinar el valor de π, entre el intervalo comprendido por 3 10/71, como valor mínimo, y 3 1/7, como valor máximo. Con esta aproximación de Arquímedes se obtiene un valor con un error que oscila entre 0,024% y 0,040% sobre el valor real. El método usado por Arquímedes era muy simple y consistía en circunscribir e inscribir polígonos regulares de n-lados en circunferenciasy calcular el perímetro de dichos polígonos. Arquímedes empezó con hexágonos circunscritos e inscritos, y fue doblando el número de lados hasta llegar a polígonos de 96 lados.
Alrededor del año 20 d. C., el arquitecto e ingeniero romano Vitruvio calcula π como el valor fraccionario 25/8 midiendo la distancia recorrida en una revolución por una rueda de diámetro conocido.
En el siglo II, ClaudioPtolomeo proporciona un valor fraccionario por aproximaciones:
Matemática china
El cálculo de pi fue una atracción para los matemáticos expertos de todas las culturas. Hacia 120, el astrólogo chino Chang Hong (78-139) fue uno de los primeros en usar la aproximación , que dedujo de la razón entre el volumen de un cubo y la respectiva esfera inscrita. Un siglo después, el astrónomo Wang Fang...
Regístrate para leer el documento completo.