hola
FUERZAS NO CONSERVATIVAS
Determinar (atendiendo a los conceptos de trabajo y energía, es decir, sin utilizar la 2ª ley de
Newton) la aceleración que alcanza un bloque de masa m al bajar por un plano inclinado un
ángulo ϕ y con un coeficiente de rozamiento µ.
Solución: I.I. 94
Texto solución
Dos bloques de masas 12 kg y 15 kg cuelgan de un cable que pasa por una poleade masa
despreciable. Si los bloques se sueltan desde el reposo cuando el primero está a ras del suelo
y el segundo a una altura de 1.5 m y se observa que el segundo bloque golpea el suelo a una
velocidad de 1.4 m/s, determínese: a) la energía disipada por causa del rozamiento en el eje
de la polea, b) la fuerza ejercida por el cable sobre cada uno de los dos bloques durante el
movimiento.Solución: I.I. 94
Texto solución
Calcular el trabajo efectuado por la fuerza F = ( 2xy, 3z, 5zy ) al recorrer su punto de
aplicación el arco de la curva x = t + 1 , y = t 3 − 1 , z = t 2 desde el punto A (0, –2, 1) al B (2,
0, 1). ¿Dependerá este trabajo del camino recorrido para ir desde A hasta B?
Solución: I.T.I. 94
Texto solución
Un cantinero en un salón del oeste desliza unabotella de whisky de centeno sobre el
mostrador horizontal hacia un vaquero que está del otro lado de la barra a una distancia de
7m. ¿Con qué rapidez deberá soltar la botella si el coeficiente de rozamiento cinético es de
0.1 y la botella llega en reposo justo frente al vaquero?
Solución: I.T.T. 93, 95
Texto solución
Física
Trabajo y Energía
Página 1
Un trineo de 20 kg se deslizapor una colina, desde una altura de 20 m. El trineo inicia su
movimiento a partir del reposo y tiene una velocidad de 16 m/s cuando llega al pie de la
colina. Calcule la energía perdida por fricción. Si la pendiente de la colina es de 30˚ calcule el
coeficiente de rozamiento cinemático entre el trineo y el suelo así como la potencia de
rozamiento.
Solución: I.T.I. 95
Texto soluciónColocamos una cuerda flexible de 1 m de longitud sobre una mesa de tal forma que parte de
ella cuelgue por un extremo. Se deja caer desde una posición ligeramente separada de la
posición de equilibrio en la cual el peso de la parte que cuelga equilibra al rozamiento
dinámico. Calcular la velocidad de la cuerda cuando el extremo que está sobre la mesa llegue
al borde de la misma. µd = 0.5.
Solución:I.T.I. 97, I.T.T. 97, 04
Llamemos λ a la densidad de masa por unidad de longitud de la cuerda y x0 a la longitud
inicial de cuerda que cuelga por el extremo de la mesa en la cual el peso de la parte que
cuelga equilibra al rozamiento:
mcuerda g = µd N cuerda = µd mcuerda g
que cuelga
⇒
sobre la
mesa
λ x0 g = µ d λ ( L − x0 ) g
sobre la
mesa
⇒
⎛ µd ⎞
x0 = ⎜
L
⎝ 1 +µd ⎟⎠
Si desplazamos ligeramente a la cuerda de esta posición de equilibrio de forma que
empiece a deslizar por el borde de la mesa, cuando la parte que cuelga tenga una
longitud x la fuerza neta que tira de ella será:
F = mcuerda g − µd mcuerda g = λ xg − µd λ ( L − x ) g = λ g ⎡⎣(1 + µd ) x − µd L ⎤⎦
que cuelga
sobre la
mesa
El trabajo realizado por dicha fuerza desde elinicio hasta que la cuerda se descuelga por
completo se invertirá en la energía cinética final de la cuerda (ya que ésta parte del
reposo):
L
W=
∫ Fdx = ΔE
x0
⇒
Física
c
=
1 2 1
mv = λ Lv 2
2
2
⎡
⎤ 1
⎛ L2 x 2 ⎞
λ g ⎢(1 + µd ) ⎜ − 0 ⎟ − µd L ( L − x0 ) ⎥ = λ Lv 2
2 ⎠
⎝ 2
⎣
⎦ 2
Trabajo y Energía
Página 2
Introduciendo en esta expresión elvalor de x0 calculado inicialmente:
⇒
1 λ gL2 1
= λ Lv 2
2 1 + µd 2
⇒
⎛ gL ⎞
v = ⎜
⎝ 1 + µd ⎟⎠
1/2
2.56 m/s
=
Una partícula de 0.4 kg resbala sobre un carril circular horizontal que tiene 1.5 m de radio. A
la partícula se le imprime una velocidad inicial de 8 m/seg. Después de una revolución su
velocidad disminuye a 6 m/seg, debido al rozamiento. a) Calcular...
Regístrate para leer el documento completo.