Hoy formulario
f ( x) − l < ε
θ −> 0
lim
senθ tan θ
θ
=1 =1
θ −> 0
lim
θ
DERIVADAS
( c )′ =0
( x )′ = 1
cu ′ c ′ =− 2 u u u′ ′ u = 2 u ( u )′ ( ln u )′ = u eu ′ = e u ⋅ u ′
( )
( )
( cx )′ = c
x ′ 1 = c c 1 1 ′ =− 2 x x 1 ′ x = 2 x 1 ( ln x )′ = x ex ′= ex
( senu )′ = cos u ⋅ u ′
( cos u )′ = − senu ⋅ u′
( tan u )′ = sec2 u ⋅ u′
( cot u )′ = − csc 2 u ⋅ u′
( sec u )′ = sec u tan u ⋅ u ′
( )
( )
( csc u )′ = − csc u cot u ⋅ u′INTEGRALES
∫ dx = x + c ∫ cdu = c ∫ du
x n +1 +c n +1 x x ∫ e dx = e + c
n ∫ x dx =
( senx )′ = cos x
( cos x )′ = − senx
( u + v − w)′ = u´+v´− w´ ( cu )′ = c ( u )´ ( uv )´= uv´+vu´
(u )′ = nu ( u )´
n n −1
∫ sen ( x ) dx = − cos ( x ) + c ∫ cos ( x ) dx = sen ( x ) + c dx ∫ x = ln x + c ∫ ( du + dv − dw ) = ∫ du + ∫ dv − ∫ dw
u n+1 ∫ u du = n + 1 + c du ∫ u = ln u + c
n u ′ v ( u )´−u ( v )´ = v2 v u ′ u ′ = c c
COLEGIO HEBREO TARBUT 2011-2012 FORMULARIO CÁLCULO DIFERENCIAL E INTEGRAL ÁREA III
∫ ax ± b = a ln ax ± b + c ∫ e du = e + c ∫senudu = − cos u + c ∫ cos udu = senu + c ∫ tan udu = ln sec u + c ∫ cot udu = − ln csc u + c ∫ sec udu = ln ( sec u + tan u ) + c ∫ csc udu = ln ( csc u − cot u ) + c ∫ sec udu = tan u + c ∫ csc udu = −cot u + c ∫ csc u cot udu = − csc u + c ∫ sec u tan udu = sec u + c
u u 2
dx
1
INTEGRAL DEFINIDA
∫ f ( x ) dx = F (b) − F (a)
a
b
INTEGRAL POR PARTES
∫ udv = uv − ∫ vduEXPONENTES
a n a m = a n+m an = a n− m am 1 a−n = n a 0 a = 1, si a ≠ 0
2
(a)m = m (a)
log b a =
n
n
LOGARITMOS
u = sen −1 + c a a −u du 2 2 ∫ u 2 ± a 2 = ln u + u ± a + c du 1−1 u ∫ u 2 + a 2 = a tan a + c du 1 u−a ∫ u 2 − a 2 = 2a ln u + a + c du 1 a+u ∫ a 2 − u 2 = 2a ln a − u + c u 2 2 a2 u a 2 − u 2 du = a − u + arcsen + c ∫ 2 2 a 2 u 2 a 2 2 2...
Regístrate para leer el documento completo.