Inecuaciones
Suponemos que ya conocemos los símbolos “>” (mayor que), “<” (menor que), “≥” (mayor o igual que) y “≤” (menor o igual que) que usamos para relacionar un número con otro.
Escribimos, por ejemplo, 4 >–1 para señalar que 4 es mayor que –1. También podemos escribir –2 < 3 para señalar que –2 es menor que 3.
Ejemplos como estos se conocencomo desigualdades.
Sabido esto, diremos que una inecuación es el enunciado de una desigualdad que incluye alguna de las siguientes relaciones de orden: “mayor que”(>); “menor que” (<); “mayor o igual que” (≥), y “menor o igual que” (≤). En la desigualdad aparece al menos una incógnita o valor desconocido y que se cumple para ciertos valores de ella.
Si el grado de la inecuación es uno (deprimer grado), se dice que la inecuación es lineal.
Esto porque al escribir las desigualdades usamos números y por esto mismo es que podemos usar la recta numérica para visualizar o graficar dichas desigualdades.
inecuaciones_lineales001
Observa que en la recta de arriba:
4 > –1, porque 4 está a la derecha de –1 en la recta numérica.
–2 < 3, porque –2 está a la izquierda de 3 en larecta numérica
–3 < –1, porque -3 está a la izquierda de –1 en la recta numérica
0 > –4, porque 0 está a la derecha de –4 en la recta numérica
Una inecuación lineal, entonces, es una expresión matemática que describe cómo se relacionan entre sí dos expresiones lineales.
Por ejemplo: 3 + 5x ≥ 18; y otro, –2(x + 3) < –9.
Como resolver una inecuación
Resolver una inecuación es encontrarlos valores de la incógnita para los cuales se cumple la desigualdad. La solución de una inecuación es, por lo general, un intervalo o una unión de intervalos de números reales, por ello es que se puede representar haciendo uso de intervalos en la recta numérica, la cual contiene infinitos números reales.
Las reglas para la resolución de una inecuación son prácticamente las mismas que seemplean para la resolución de ecuaciones, pero deben tenerse presentes las propiedades de las desigualdades.
Como ya dijimos, se puede ilustrar la solución de una inecuación con una gráfica, utilizando la recta numérica y marcando el intervalo entre los números que dan solución a la desigualdad. Si la solución incluye algún extremo definido del intervalo, en la gráfica representamos dicho extremo conun círculo en negrita; en cambio, si la solución no incluye el extremo, lo representamos mediante un círculo en blanco.
Ejemplo: x > 7 (equis es mayor que 7)
inecuaciones_lineales003
Los valores mayores a 7 se representan a la derecha de la recta numérica y no incluyen al 7. En intervalo desde el punto blanco hacia el infinito a la derecha se escribe: inecuaciones_lineales005
Ejemplo:x ≥ 7 (equis es mayor o igual a 7)
inecuaciones_lineale007
Los valores mayores e iguales a 7 se representan a la derecha de la recta numérica e incluyen al 7. El intervalo desde el punto negro hacia el infinito a la derecha se escribe: inecuaciones_lineales009
Nótese la postura del corchete cuando incluye y cuando no incluye una cifra determinada dentro del intervalo.
Resolución deinecuaciones lineales (de primer grado) con una incógnita
Veamos algunos ejemplos:
Resolver la inecuación 4x - 3 > 53 (Se lee: cuatro equis menos tres es mayor que 53)
Debemos colocar las letras a un lado y los números al otro lado de la desigualdad (en este caso, mayor que >), entonces para llevar el –3 al otro lado de la desigualdad, le aplicamos el operador inverso (el inverso de –3 es +3,porque la operación inversa de la resta es la suma).
Tendremos: 4x − 3 + 3 > 53 + 3
4x > 53 +3
4x > 56
Ahora tenemos el número 4 que está multiplicando a la variable o incógnita x, entonces lo pasaremos al otro lado de la desigualdad dividiendo (la operación inversa de la multiplicación es la división).
Tendremos ahora: x > 56 ÷ 4...
Regístrate para leer el documento completo.