Ing Civil
Formulario de
Cálculo Diferencial
e Integral
VER.4.3
Jesús Rubí Miranda (jesusrubim@yahoo.com)
http://mx.geocities.com/estadisticapapers/
http://mx.geocities.com/dicalculus/
VALOR ABSOLUTO
⎧ a si a ≥ 0
a =⎨
⎩ − a si a < 0
a = −a
n
∏a
a+b ≤ a + b ó
n
∑ ca
k =1
n
k =1
k =1
n
k
≤ ∑ ak
∑(a
k =1
∑(acsc
1
1
∞
∞
323 2
321 3
2
2
1
1
1 21 2
313
2 23
3 2 12
0
0
1
1
∞
∞
0
12
y = ∠ sen x
y = ∠ cos x
⎡ π π⎤
y ∈ ⎢− , ⎥
⎣ 2 2⎦
y ∈ [ 0, π ]
y∈ −
k =1
n
k =1
k =1
k
+ bk ) = ∑ ak + ∑ bk
k
− ak −1 ) = an − a0
n
∑ ar
k −1
k =1
,
22
log a MN = log a M + log a N
M
log a
= log a M − log a N
N
log a N r = r log a N
log b Nln N
=
log b a ln a
cos (θ + π ) = − cosθ
2
( a − b ) ⋅ ( a + ab + b ) = a − b
( a − b ) ⋅ ( a3 + a 2 b + ab2 + b3 ) = a 4 − b4
( a − b ) ⋅ ( a 4 + a3b + a 2 b2 + ab3 + b 4 ) = a5 − b5
2
n
2
⎞
3
3
( a − b ) ⋅ ⎜ ∑ a n − k b k −1 ⎟ = a n − b n
⎝ k =1
⎠
∀n ∈
-4
-2
0
2
4
6
n
8
2. 5
0. 5
0
-0 . 5
-1
-1 . 5
+ xk )
cs c x
sec x
ct g x
-2
-2 . 5
-8
-6
-4
-2
0
2
4
6
8
Gráfica 3. Las funciones trigonométricas inversas
arcsen x , arccos x , arctg x :
n!
n
=∑
x1n1 ⋅ x2 2
n1 !n2 ! nk !
nk
k
x
θ
CA
π⎞
⎛
sen θ = cos ⎜θ − ⎟
2⎠
⎝
sen (α ± β ) = sen α cos β ± cos α sen β
cos (α ± β ) = cos α cos β ∓ sen α sen β
1
tg α ± tg β
tg (α ± β ) =
1 ∓ tg α tg β
sen2θ = 2 sen θ cosθ
-1
-2
-3
π radianes=180
HIP
n
⎛ 2n + 1 ⎞
sen ⎜
π ⎟ = ( −1)
⎝2
⎠
⎛ 2n + 1 ⎞
cos ⎜
π⎟=0
⎝2
⎠
⎛ 2n + 1 ⎞
tg ⎜
π⎟=∞
⎝2
⎠
2
0
CO
ar c s en x
a r c co s x
ar c t g x
-2
-1
0
1
2
cos 2θ = cos 2 θ − sen 2 θ
3
e x − e− x
2
e x + e− x
cosh x =
2
senh x e x − e − x
tgh x =
=
cosh x e x + e − x
1
e x + e− x
ctgh x ==
tgh x e x − e − x
1
2
sech x =
=
cosh x e x + e − x
1
2
=
csch x =
senh x e x − e − x
senh x =
senh :
n
π⎞
⎛
cosθ = sen ⎜θ + ⎟
2⎠
⎝
4
3
CONSTANTES
π = 3.14159265359…
e = 2.71828182846…
TRIGONOMETRÍA
CO
1
sen θ =
cscθ =
HIP
sen θ
CA
1
cosθ =
secθ =
HIP
cosθ
sen θ CO
1
tg θ =
ctg θ =
=
cosθ CA
tg θ
tg (θ + nπ ) = tg θ
sen ( nπ ) = 0
tg( nπ ) = 0
1
+ ( 2n − 1) = n 2
n
cos (θ + nπ ) = ( −1) cos θ
cos ( nπ ) = ( −1)
2
1. 5
⎛n⎞
n!
, k≤n
⎜ ⎟=
⎝ k ⎠ ( n − k )!k !
n
⎛n⎞
n
( x + y ) = ∑ ⎜ ⎟ xn−k y k
k =0 ⎝ k ⎠
( x1 + x2 +
tg (θ + π ) = tg θ
sen (θ + nπ ) = ( −1) sen θ
Gráfica 2. Las funciones trigonométricas csc x ,
s ec x , ctg x :
k =1
( a + b) ⋅ ( a − b) = a − b
2
( a + b ) ⋅ ( a + b) = ( a + b ) = a 2 + 2ab + b2
2
( a − b ) ⋅ ( a − b ) = ( a − b ) = a 2 − 2ab + b 2
( x + b ) ⋅ ( x + d ) = x 2 + ( b + d ) x + bd
( ax + b ) ⋅ ( cx + d ) = acx 2 + ( ad + bc ) x + bd
( a + b ) ⋅ ( c + d ) = ac + ad + bc + bd
3
( a + b ) = a3 + 3a 2b + 3ab2 + b3
3
( a − b ) = a3 − 3a 2b + 3ab2 − b3
2
( a + b + c ) = a 2 + b2 + c 2 + 2ab + 2ac + 2bc
2
tg ( −θ ) = − tg θ
tg (θ +2π ) = tg θ
s en x
co s x
tg x
sen α ⋅ cos β =
cos ( −θ ) = cosθ
cos (θ + 2π ) = cosθ
-6
5
tg α + tg β
ctg α + ctg β
FUNCIONES HIPERBÓLICAS
n
n
ALGUNOS PRODUCTOS
a ⋅ ( c + d ) = ac + ad
tg α ⋅ tg β =
sen (θ + π ) = − sen θ
-2
-8
n! = ∏ k
log10 N = log N y log e N = ln N
sen ( −θ ) = − sen θ
1 + ctg 2 θ = csc2 θ
sen (θ + 2π ) = sen θ
-1. 5
sen (α ± β )
cos α ⋅ cos β
tg 2 θ + 1 = sec2 θ
sen θ + cos2 θ = 1
2
-1
1
1
= 2 sen (α + β ) ⋅ cos (α − β )
2
2
1
1
= 2 sen (α − β ) ⋅ cos (α + β )
2
2
1
1
= 2 cos (α + β ) ⋅ cos (α − β )
2
2
1
1
= −2 sen (α + β ) ⋅ sen (α − β )
2
2
1
⎡sen (α − β ) + sen (α + β ) ⎤
⎦
2⎣
1
sen α ⋅ sen β = ⎡cos (α − β ) − cos (α + β ) ⎤
⎦
2⎣
1
cos α ⋅ cos β =...
Regístrate para leer el documento completo.