ingeniero industrial

Páginas: 3 (748 palabras) Publicado: 21 de enero de 2014
Factorizar binomios mediante el máximo común divisor. Por ejemplo, si estas factorizando 2x ^ 2 - 50, puedes factorizar un 2. Esto te da 2 (x ^ 2 - 25).
2
Revisa todos los binomios para ver si sonuna diferencia de dos cuadrados perfectos. Puesto que x ^ 2 y 25 son los dos cuadrados perfectos, 2 (x ^ 2 - 25) puede ser factorizado también.

3
Para factorizar un problema que contenga ladiferencia de cuadrados se utiliza este patrón: (___ x - ___) (___ x + ___). Los números en los espacios en blanco son las raíces cuadradas de los números en el binomio. La raíz cuadrada de x ^ 2 es x, yla raíz cuadrada de 25 es 5, por lo que se verá 2 (x - 5) (x 5).
4
Factoriza trinomios que no tienen un coeficiente principal listando todos los factores del último término. Si estas factorizando x ^2 + 3x - 40, los factores de -40 son: 1 * -40, -1 * 40, 2 * -20, -2 * 20, 4 * -10, -4 * 10, 5 * -8 y -5 * 8.
5
Determina cual es el par de factores que se suman para conseguir el término de lamitad, y utiliza los números en el patrón básico de factoreo (x + / - ____) (x + / - ____). En este ejemplo, la pareja a utilizar es de -5 * 8, que resulta de la siguiente forma (x - 5) (x + 8)
6Factoriza trinomios que tienen un coeficiente principal mediante la factorización de un máximo común divisor, si es que existe. En 12x ^ 2 - 18x - 20, hay un máximo común divisor de dos. Factorizando estoqueda 2 (6x ^ 2 - 9x - 10).
7
Factoriza el trinomio nuevo por ensayo y error. Escribe todos los factores posibles de los términos primero y último. Los factores de 6 son 1 * 6 y 2 * 3. Los factoresde -10 son una * -10, -1 * 10, -2 * 5, y 5 * -2.

8
Utiliza estas posibles combinaciones en el patrón de factorización base. Puedes utilizar (2x + 1) (3x - 10).

9
Utiliza el método FOIL paracomprobar si tienes la combinación correcta. El método FOIL te pide que se multipliquen los primeros (2x y 3x), extremos (2x y -10), medios (1 y 3x) y últimos (1 y -10) términos juntos. Esto da 6x ^ 2...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Ingeniero Industrial
  • Ingeniero Industrial
  • Ingeniero Industrial
  • Ingeniero Industrial
  • Ingeniero Industrial
  • Ingeniero Industrial
  • Ingeniero Industrial
  • Ingeniero Industrial

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS