investigacion sobre "LA HISTORIA DE LAS CONICAS" matematicas
LAS CONICAS
El matemático griego Menecmo (vivió sobre el 350 A.C.) descubrió estascurvas y fue el matemático griego Apolonio (262-190 A.C.) de Perga (antiguaciudad del Asia Menor) el primeroen estudiar detalladamente las curvascónicas y encontrar la propiedad plana que las definía. Apolonio descubrió quelas cónicas se podían clasificar en tres tipos a los que dio el nombre de: elipses,hipérbolas y parábolas.
Las elipses son las curvas que se obtiene cortando una superficie cónica conun plano que no es paralelo a ninguna de sus generatrices.
Las hipérbolas son las curvas que seobtiene al cortar una superficie cónicacon un plano que es paralelo a dos de sus generatrices (Base y arista).
Las parábolas son las curvas que se obtienen al cortar una superficie cónicacon un planoparalelo a una sola generatriz (Arista)
.Apolonio demostró que las curvas cónicas tienen muchas propiedadesinteresantes. Algunas de esas propiedades son las que se utilizan actualmenteparadefinirlas.Quizás las propiedades más interesantes y útiles que descubrió Apolonio delas cónicas son las llamadas propiedades de reflexión. Si se construyenespejos con la forma de una curva cónica que giraalrededor de su eje, seobtienen los llamados espejos elípticos, parabólicos o hiperbólicos, según lacurva que gira. Apolonio demostró que si se coloca una fuente de luz en el focode un espejo elíptico,entonces la luz reflejada en el espejo se concentra en elotro foco. Si se recibe luz de una fuente lejana con un espejo parabólico demanera que los rayos incidentes son paralelos al eje del espejo,entonces la luzreflejada por el espejo se concentra en el foco. Esta propiedad permite encender un papel si se coloca en el foco de un espejo parabólico y el eje delespejo se apunta hacia el sol. Existe laleyenda de que Arquímedes (287-212A.C.) logró incendiar las naves romanas durante la defensa de Siracusausando las propiedades de los espejos parabólicos. En la actualidad estapropiedad se utiliza...
Regístrate para leer el documento completo.