jhbglk

Páginas: 6 (1327 palabras) Publicado: 15 de junio de 2013
Divina proporción en la naturaleza
La proporción áurea aparece en un sinfín de casos en la naturaleza. Uno de ellos es la proporción entre distintas partes de nuestro propio cuerpo, como expuse brevemente en la entrada "Cuerpo áureo". Pero hay muchos más ejemplos, realmente innumerables: la razón del diámetro del tronco de un árbol y el de las primeras ramas que salen de él es áurea, al igualque la razón entre las nervaduras de las hojas.  Los siguientes ejemplos son bastante evidentes siguiendo el hilo de "número de oro" en este blog:


















Al cortar una manzana transversalmente nos encontramos con un pentagrama, al igual que en la estrella de mar


La galaxia M101 a 25 millones de a.l , el tifón Rammasun y trazas dejadas por partículas subatómicas enuna cámara de burbujas del CERN

Tan diferentes en tamaño (la galaxia tiene una 170000 a.l. de anchura y el tifón unos 1000 Km), estando uno a millones de años luz de distancia y el otro aquí en nuestro planeta,  las dos estructuras tienen en común el tener la misma geometría: una espiral logarítmica. A una escala muchísimo más pequeña, lo mismo ocurre a cuando se registran en una cámara deburbujas las trazas dejadas por partículas subatómicas, como los electrones o los protones, producidas tras la colisión de dos partículas iniciales.

Ojo de santa lucía
Poniendo nuevamente los pies en la tierra a la escala a la que estamos habituados y dando un paseo por la playa, nos podemos encontrar con la llamada "ojo de santa lucía".
La espiral logarítmica que más aparece en los libros y enla red es el caparazón del nautilus.


Y un caso que me parece verdaderamente curioso: en la población de abejas en una colmena. Según parece la razón entre las abejas macho y las abejas hembra es el número phi. Esto tiene que ver con la vinculación que hay entre el número áureo y la llamada sucesión de Fibonacci. Esta sucesión es la siguiente: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89...

Cadanúmero es la suma de los dos anteriores. Ejm: 13 = 5+8. La sucesión tiene infinitos términos.
Si llamamos an  al n-ésmo término de la sucesión y an+1  al término siguiente, se tiene que cuanto más lejos nos vamos en la sucesión, es decir, cuanto más grandes sean los términos, la razón:
an /an+1 
tiende al número phi. Esto se puede comprobar fácilmente: 8/5 = 1.6 ; 13:8 = 1.625 ; 21/13 = 1.615... Yasí sucesivamente, de donde se obtiene una difinición del número de oro diferente a la de las entradas anteriores.
Como es sabido la comunidad de una colmena es peculiar: los machos (zánganos) dedican su vida a fecundar huevos de la reina, la cual vive exclusivamente para poner huevos. De los huevos fecundados se producen las abejas hembras (las obreras) y de los que no son fecundados, losmachos. Supongamos entonces, que tenemos un zángano y nos ponemos a hacer su árbol genealógico (clicar para ver más grande):

Cada generación está escrita en un color diferente. A continuación está escrita la cantidad de abejas en cada genración (negro). Al lado, en azul, están la cantidad de hembras de esa generación y en rojo la cantidad de zánganos.
Como puede verse, el número total deantepasados del zángano sigue la sucesión de Fibonacci: 
1, 1, 2, 3, 5, 8, 13, 21, 34, 55... 
Por otro lado, también el número de hembras en cada generación:
0, 1, 1, 2, 3, 5, 8,13 ...
Y el número de machos en cada generación:
1, 0, 1, 1, 2, 3, 5, 8, 13...
Si dividimos el número de hembras entre el número de machos en cada generación se puede apreciar que el resultado tiende al número de oro conformeconsideramos generaciones más anteriores.
Teniendo en cuenta que la comunidad de la colmena es cerrada, la proporción entre machos y hembras en la población será esa.
En el reino vegetal, la sucesión de Fibonacci y el número phi están especialmente presentes... Tanto en las 
dimensiones de hojas, como en la distribución de estas a lo largo del tallo, en la distribución de las semillas en un...
Leer documento completo

Regístrate para leer el documento completo.

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS